SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People

被引:0
作者
Zapaishchykova, Anna [1 ,2 ,3 ,4 ,5 ]
Kann, Benjamin H. [1 ,2 ,3 ,4 ,5 ]
Tak, Divyanshu [1 ,2 ,3 ,4 ,5 ]
Ye, Zezhong [1 ,2 ,3 ,4 ,5 ]
Haas-Kogan, Daphne A. [1 ,2 ,3 ,6 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Med Sch, Mass Gen Brigham, Artificial Intelligence Med AIM Program, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Radiat Oncol, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] Maastricht Univ, Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[5] Maastricht Univ, GROW, Maastricht, Netherlands
[6] Boston Childrens Hosp, Boston, MA USA
来源
DEEP GENERATIVE MODELS, DGM4MICCAI 2024 | 2025年 / 15224卷
基金
美国国家卫生研究院;
关键词
Generative Models; Diffusion Probabilistic Models; Neural aging; AGE;
D O I
10.1007/978-3-031-72744-3_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions. Synthetically generated, age-adjusted brain images could serve as valuable alternatives to costly longitudinal imaging acquisitions, serve as internal controls for studies looking at the effects of environmental or therapeutic modifiers on brain development, and allow data augmentation for diverse populations. In this paper, we present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step. To validate the feasibility of using synthetically generated data on downstream tasks, we compared structural volumetrics of two-year-aged brains against synthetically aged brain MRI. The use of structural similarity indices, such as the Structural Similarity Index Measure (SSIM), for evaluating synthetic medical images has come under recent scrutiny. These indices may not effectively capture the perceptual quality or clinical usefulness in synthesized radiology scans. To assess the performance of SynthBrainGrow, we evaluated the substructural volumetric similarity between synthetic and real patient scans. Results show that SynthBrainGrow can accurately capture substructure volumetrics and simulate structural changes such as ventricle enlargement and cortical thinning. Generating longitudinal brain datasets from cross-sectional data could enable augmented training and benchmarking of computational tools for analyzing lifespan trajectories. This work signifies an important advance in generative modeling to synthesize realistic longitudinal data with limited lifelong MRI scans. The code is available at https://github.com/zapaishchykova/SynthBrainGrow.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 28 条
  • [1] Prediction of brain age using quantitative parameters of synthetic magnetic resonance imaging
    Bao, Shasha
    Liao, Chengde
    Xu, Nan
    Deng, Ailin
    Luo, Yueyuan
    Ouyang, Zhiqiang
    Guo, Xiaobin
    Liu, Yifan
    Ke, Tengfei
    Yang, Jun
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [2] Brain charts for the human lifespan
    Bethlehem, R. A. I.
    Seidlitz, J.
    White, S. R.
    Vogel, J. W.
    Anderson, K. M.
    Adamson, C.
    Adler, S.
    Alexopoulos, G. S.
    Anagnostou, E.
    Areces-Gonzalez, A.
    Astle, D. E.
    Auyeung, B.
    Ayub, M.
    Bae, J.
    Ball, G.
    Baron-Cohen, S.
    Beare, R.
    Bedford, S. A.
    Benegal, V.
    Beyer, F.
    Blangero, J.
    Blesa Cabez, M.
    Boardman, J. P.
    Borzage, M.
    Bosch-Bayard, J. F.
    Bourke, N.
    Calhoun, V. D.
    Chakravarty, M. M.
    Chen, C.
    Chertavian, C.
    Chetelat, G.
    Chong, Y. S.
    Cole, J. H.
    Corvin, A.
    Costantino, M.
    Courchesne, E.
    Crivello, F.
    Cropley, V. L.
    Crosbie, J.
    Crossley, N.
    Delarue, M.
    Delorme, R.
    Desrivieres, S.
    Devenyi, G. A.
    Di Biase, M. A.
    Dolan, R.
    Donald, K. A.
    Donohoe, G.
    Dunlop, K.
    Edwards, A. D.
    [J]. NATURE, 2022, 604 (7906) : 525 - +
  • [3] SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
    Billot, Benjamin
    Greve, Douglas N.
    Puonti, Oula
    Thielscher, Axel
    Van Leemput, Koen
    Fischl, Bruce
    Dalca, Adrian V.
    Iglesias, Juan Eugenio
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 86
  • [4] The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites
    Casey, B. J.
    Cannonier, Tariq
    Conley, May I.
    Cohen, Alexandra O.
    Barch, Deanna M.
    Heitzeg, Mary M.
    Soules, Mary E.
    Teslovich, Theresa
    Dellarco, Danielle V.
    Garavan, Hugh
    Orr, Catherine A.
    Wager, Tor D.
    Banich, Marie T.
    Speer, Nicole K.
    Sutherland, Matthew T.
    Riedel, Michael C.
    Dick, Anthony S.
    Bjork, James M.
    Thomas, Kathleen M.
    Chaarani, Bader
    Mejia, Margie H.
    Hagler, Donald J., Jr.
    Cornejo, M. Daniela
    Sicat, Chelsea S.
    Harms, Michael P.
    Dosenbach, Nico U. F.
    Rosenberg, Monica
    Earl, Eric
    Bartsch, Hauke
    Watts, Richard
    Polimeni, Jonathan R.
    Kuperman, Joshua M.
    Fair, Damien A.
    Dale, Anders M.
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 : 43 - 54
  • [5] Brain age predicts mortality
    Cole, J. H.
    Ritchie, S. J.
    Bastin, M. E.
    Hernandez, M. C. Valdes
    Maniega, S. Munoz
    Royle, N.
    Corley, J.
    Pattie, A.
    Harris, S. E.
    Zhang, Q.
    Wray, N. R.
    Redmond, P.
    Marioni, R. E.
    Starr, J. M.
    Cox, S. R.
    Wardlaw, J. M.
    Sharp, D. J.
    Deary, I. J.
    [J]. MOLECULAR PSYCHIATRY, 2018, 23 (05) : 1385 - 1392
  • [6] Dhariwal Prafulla, 2021, arXiv
  • [7] Dorjsembe Z, 2024, Arxiv, DOI [arXiv:2305.18453, 10.48550/arXiv.2305.18453, DOI 10.48550/ARXIV.2305.18453]
  • [8] Durrer A, 2023, Arxiv, DOI [arXiv:2303.08189, 10.48550/arXiv.2303.08189, DOI 10.48550/ARXIV.2303.08189]
  • [9] Unbiased average age-appropriate atlases for pediatric studies
    Fonov, Vladimir
    Evans, Alan C.
    Botteron, Kelly
    Almli, C. Robert
    McKinstry, Robert C.
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (01) : 313 - 327
  • [10] Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration
    Fu, Jingru
    Tzortzakakis, Antonios
    Barroso, Jose
    Westman, Eric
    Ferreira, Daniel
    Moreno, Rodrigo
    [J]. HUMAN BRAIN MAPPING, 2023, 44 (04) : 1289 - 1308