On the number of residues of certain second-order linear recurrences

被引:0
作者
Accossato, Federico
Sanna, Carlo
机构
关键词
Fractional parts of powers; Lehmer sequences; linear recurrences; Pisot numbers; primitive divisors; residues; FRACTIONAL-PARTS; LIMIT POINTS; POWERS; DIVISORS; LUCAS; SEQUENCES; PROPERTY; CONTAIN; MODULI;
D O I
10.5802/crmath.647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every monic polynomial f E 77[X ] with deg(f) >= 1, let (f ) be the set of all linear recurrences with values in 77 and characteristic polynomial f , and let { r ( f ) := rho ( x ; m ) : x E (f ), m E 77 + , where rho ( x ; m ) is the number of distinct residues of x modulo m . Dubickas and Novikas proved that r ( X 2 - X - 1) = 77 + . We generalize this result by showing that r ( X 2 - a 1 X -1) = 77 + for every nonzero integer a 1 . As a corollary, we deduce that for all integers a 1 >= 1 and ) iJ ) k >= 2 there exists 4 E D8 such that the sequence of fractional parts frac(4 alpha n) n >= 0 , where alpha := a 1 + a 2 1 + 4 /2, has exactly k limit points. Our proofs are constructive and employ some results on the existence of special primitive divisors of certain Lehmer sequences.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
Avila B, 2013, FIBONACCI QUART, V51, P151
[2]  
Bilu Y, 2001, J REINE ANGEW MATH, V539, P75
[3]   DISTRIBUTION PROPERTY FOR LINEAR RECURRENCE OF 2ND ORDER [J].
BUMBY, RT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) :101-106
[4]  
Burr S. A., 1971, Fibonacci Q, V9, P497
[5]   There are infinitely many limit points of the fractional parts of powers [J].
Dubickas, A .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04) :391-397
[6]   Arithmetical properties of powers of algebraic numbers [J].
Dubickas, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :70-80
[7]  
Dubickas A, 2006, ARCH MATH-BRNO, V42, P151
[8]   Recurrence with prescribed number of residues [J].
Dubickas, Arturas ;
Novikas, Aivaras .
JOURNAL OF NUMBER THEORY, 2020, 215 :120-137
[9]   LINEAR RECURRENCE SEQUENCES WITHOUT ZEROS [J].
Dubickas, Arturas ;
Novikas, Aivaras .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) :857-865
[10]  
Everest G., 2003, Recurrence sequences