共 34 条
[1]
Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A., Ogurtsova K., Shaw J.E., Bright D., Williams R., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: rresults from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pract., 157, 157, (2019)
[2]
Mari T.R.B., Izaac J., Schuld M., Killoran N., Transfer learning in hybrid classical-quantum neural networks, Quantum, 4, (2020)
[3]
Thomas G.A.S., Robinson Y.H., Julie E.G., Shanmuganathan V., Rho S., Nam Y., Intelligent prediction approach for diabetic retinopathy using deep learning based convolutional neural networks algorithm by means of retina photographs, Comput. Mater. Continua, 66, pp. 1613-1629, (2020)
[4]
Bhimavarapu U., Battineni G., Deep learning for the detection and classification of diabetic retinopathy with an improved activation function, Healthcare (Switzerland), 11, (2023)
[5]
Mir A., Yasin U., Khan S.N., Athar A., Jabeen R., Aslam S., Diabetic retinopathy detection using classical-quantum transfer learning approach and probability model, Comput. Mater. Continua, 71, pp. 3733-3746, (2022)
[6]
Alsubai S., Alqahtani A., Binbusayyis A., Sha M., Gumaei A., Wang S., Quantum computing meets deep learning: a promising approach for diabetic retinopathy classification, Mathematics, 11, (2023)
[7]
Hunter A., Lowell J., Owens J., Kennedy L., Steele D., pp. 81-86, (2000)
[8]
Yenkikar A.V., Babu C.N., SentiMLBench: bbenchmark evaluation of machine learning algorithms for sentiment analysis, Indonesian J. Electr. Eng. Inf. (IJEEI), 11, 1, (2023)
[9]
Fadafen M.K., Mehrshad N., Razavi S.M., Detection of diabetic retinopathy using computational model of human visual system, Biomed. Res. (India), 29, pp. 1956-1960, (2018)
[10]
Mushtaq G., Siddiqui F., Detection of diabetic retinopathy using deep learning methodology, IOP Confer. Ser. Mater. Sci. Eng., 1070, (2021)