Promoting the photocatalytic conversion of carbon dioxide to methanol on molybdenum dioxide using sodium species

被引:0
作者
Wang, Zekun [1 ]
Chen, Zhi [2 ]
Huang, Kai [3 ]
Lu, Chengyu [2 ]
Wang, Chunli [2 ]
Ma, Yuting [2 ]
Chen, Jianjun [4 ]
Liu, Yishan [5 ]
Wang, Jiemin [6 ]
Mi, Jinxing [4 ]
Zhang, Liangzhu [2 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[2] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China
[3] Taizhou Univ, Sch Pharmaceut & Chem Engn, Taizhou 318000, Zhejiang, Peoples R China
[4] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100084, Peoples R China
[5] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[6] Sichuan Univ, Coll Biomed Engn, Chengdu 610064, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; REDUCTION;
D O I
10.1039/d4tc04541f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mimicking natural photosynthesis to convert CO2 into small energy molecules (e.g., CH4 and CH3OH) is of great significance for carbon neutralization. However, achieving catalytic reactions with high selectivity in the absence of sacrificial reagents or extra photosensitizers remains a huge challenge. Here, we demonstrated that sodium species on MoO2 (Na/MoO2) can act as an effective photocatalyst for selectively converting CO2 into CH3OH under visible light irradiation. Na/MoO2 showed good catalytic activity, exhibiting a rate of 82.7 mu mol h-1 g-1 of CH3OH formation in a 16-h reaction with 79.4% selectivity to CH3OH compared to CO evolution when 10 mg of the catalyst was applied. The catalytic activity and selectivity of Na/MoO2 are much higher than those of pure MoO2, which only showed 3.5 mol h-1 g-1 of CH3OH formation in a 1-h reaction with 39.7% selectivity to CO, without the need for a sacrificing agent or photosensitizer. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and theoretical calculations explained that the Na atom on the (100) crystal plane could lower the CO2 activation energy barrier by reducing the reaction energy of the rate-determining path from COOH* to COH2* from 1.47 eV to 0.75 eV. Therefore, this work provides a novel view for promoting the activity of photocatalysts by introducing alkaline metal species onto metal oxides.
引用
收藏
页码:7198 / 7204
页数:7
相关论文
共 24 条
  • [1] Zheng T., Liu C., Guo C., Zhang M., Li X., Jiang Q., Xue W., Li H., Li A., Pao C.-W., Xiao J., Xia C., Zeng J., Copper-catalysed exclusive CO<sub>2</sub> to pure formic acid conversion via single-atom alloying, Nat. Nanotechnol., 16, 12, pp. 1386-1393, (2021)
  • [2] Li X., Yu J., Jaroniec M., Chen X., Cocatalysts for Selective Photoreduction of CO<sub>2</sub> into Solar Fuels, Chem. Rev., 119, 6, pp. 3962-4179, (2019)
  • [3] Habisreutinger S.N., Schmidt-Mende L., Stolarczyk J.K., Photocatalytic Reduction of CO<sub>2</sub> on TiO<sub>2</sub> and Other Semiconductors, Angew. Chem., Int. Ed., 52, 29, pp. 7372-7408, (2013)
  • [4] Ma Y., Yi X., Wang S., Li T., Tan B., Chen C., Majima T., Waclawik E.R., Zhu H., Wang J., Selective photocatalytic CO<sub>2</sub> reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO<sub>2</sub>, Nat. Commun., 13, 1, (2022)
  • [5] Deng H., Fei X., Yang Y., Fan J., Yu J., Cheng B., Zhang L., S-scheme heterojunction based on p-type ZnMn<sub>2</sub>O<sub>4</sub> and n-type ZnO with improved photocatalytic CO<sub>2</sub> reduction activity, Chem. Eng. J., 409, (2021)
  • [6] Wu X., Li Y., Zhang G., Chen H., Li J., Wang K., Pan Y., Zhao Y., Sun Y., Xie Y., Photocatalytic CO<sub>2</sub> Conversion of M<sub>0.33</sub>WO<sub>3</sub> Directly from the Air with High Selectivity: Insight into Full Spectrum-Induced Reaction Mechanism, J. Am. Chem. Soc., 141, 13, pp. 5267-5274, (2019)
  • [7] Xie S., Zhang H., Liu G., Wu X., Lin J., Zhang Q., Wang Y., Tunable localized surface plasmon resonances in MoO<sub>3−x</sub>-TiO<sub>2</sub> nanocomposites with enhanced catalytic activity for CO<sub>2</sub> photoreduction under visible light, Chin. J. Catal., 41, 7, pp. 1125-1131, (2020)
  • [8] Wang M., Shen M., Jin X., Tian J., Li M., Zhou Y., Zhang L., Li Y., Shi J., Oxygen Vacancy Generation and Stabilization in CeO<sub>2-x</sub> by Cu Introduction with Improved CO<sub>2</sub> Photocatalytic Reduction Activity, ACS Catal., 9, 5, pp. 4573-4581, (2019)
  • [9] Su B., Kong Y., Wang S., Zuo S., Lin W., Fang Y., Hou Y., Zhang G., Zhang H., Wang X., Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO<sub>2</sub> Reduction with H<sub>2</sub>O by Infrared Light, J. Am. Chem. Soc., 145, 50, pp. 27415-27423, (2023)
  • [10] Su B., Zheng M., Lin W., Lu X.F., Luan D., Wang S., Lou X.W., S-Scheme Co<sub>9</sub>S<sub>8</sub>@Cd<sub>0.8</sub>Zn<sub>0.2</sub>S-DETA Hierarchical Nanocages Bearing Organic CO<sub>2</sub> Activators for Photocatalytic Syngas Production, Adv. Energy Mater., 13, 15, (2023)