Integrative physiological, biochemical, and proteomic analysis of the leaves of two cotton genotypes under heat stress

被引:1
|
作者
Perveen, Asia [1 ]
Sheheryar, Sheheryar [2 ,3 ]
Ahmad, Fiaz [4 ]
Mustafa, Ghazala [5 ]
Moura, Arlindo Alencar [3 ]
Campos, Francisco A. P. [2 ]
Domont, Gilberto B. [6 ]
Nishan, Umar [7 ,8 ]
Ullah, Riaz [9 ]
Ibrahim, Mohamed A. [10 ]
Nogueira, Fabio C. S. [6 ]
Shah, Mohibullah [1 ,3 ]
机构
[1] Bahauddin Zakariya Univ, Dept Biochem, Multan, Pakistan
[2] Univ Fed Ceara, Dept Biochem & Mol Biol, Fortaleza, Ceara, Brazil
[3] Univ Fed Ceara, Dept Anim Sci, Fortaleza, Ceara, Brazil
[4] Cent Cotton Res Inst, Physiol Chem Sect, Multan, Pakistan
[5] Quaid I Azam Univ, Fac Biol Sci, Dept Plant Sci, Islamabad, Pakistan
[6] Univ Fed Rio de Janeiro, Inst Chem, Dept Biochem, Prote Unit, Rio De Janeiro, Brazil
[7] Hainan Normal Univ, Coll Chem & Chem Engn, Hainan Int Joint Res Ctr Marine Adv Photoelect Fu, Haikou, Hainan, Peoples R China
[8] Kohat Univ Sci & Technol, Dept Chem, Kohat, Pakistan
[9] King Saud Univ, Dept Pharmacognosy, Coll Pharm, Riyadh, Saudi Arabia
[10] King Saud Univ, Dept Pharmaceut, Coll Pharm, Riyadh, Saudi Arabia
来源
PLOS ONE | 2025年 / 20卷 / 01期
关键词
HIGH-TEMPERATURE; FUNCTIONAL-CHARACTERIZATION; BETA-GLUCOSIDASE; SHOCK PROTEINS; ABIOTIC STRESS; EXPRESSION; TOLERANCE; DROUGHT; GENE; PHOTOSYNTHESIS;
D O I
10.1371/journal.pone.0316630
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cotton (Gossypium hirsutum L.), a crucial global fibre and oil seed crop faces diverse biotic and abiotic stresses. Among these, temperature stress strongly influences its growth, prompting adaptive physiological, biochemical, and molecular changes. In this study, we explored the proteomic changes underscoring the heat stress tolerance in the leaves of two locally developed cotton genotypes, i.e., heat tolerant (GH-Hamaliya H-tol) and heat susceptible (CIM-789 H-sus), guided by morpho-physiological and biochemical analysis. These genotypes were sown at two different temperatures, control (35 degrees C) and stress (45 degrees C), in a glasshouse, in a randomized complete block design (RCBD) in three replications. At the flowering stage, a label-free quantitative shotgun proteomics of cotton leaves revealed the differential expression of 701 and 1270 proteins in the tolerant and susceptible genotypes compared to the control, respectively. Physiological and biochemical analysis showed that the heat-tolerant genotype responded uniquely to stress by maintaining the net photosynthetic rate (Pn) (25.2-17.5 mu molCO(2)m(-2)S(-1)), chlorophyll (8.5-7.8mg/g FW), and proline contents (4.9-7.4 mu mole/g) compared to control, supported by the upregulation of many proteins involved in several pathways, including photosynthesis, oxidoreductase activity, response to stresses, translation, transporter activities, as well as protein and carbohydrate metabolic processes. In contrast, the distinctive pattern of protein downregulation involved in stress response, oxidoreductase activity, and carbohydrate metabolism was observed in susceptible plants. To the best of our knowledge, this is the first proteomic study on cotton leaves that has identified more than 8000 proteins with an array of differentially expressed proteins responsive to the heat treatment that could serve as potential markers in the breeding programs after further experimentation.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Physiological and biochemical responses of cowpea genotypes to water stress under glasshouse and field conditions
    Hamidou, F.
    Zombre, G.
    Braconnier, S.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2007, 193 (04) : 229 - 237
  • [32] GENETIC AND PHYSIOLOGICAL ANALYSIS OF COTTON CULTIVARS UNDER SALT STRESS
    Noormohammadi, Zahra
    Torabizadeh, Elham
    Farahani, Farah
    Alishah, Omran
    Sheidai, Masoud
    GENETIKA-BELGRADE, 2020, 52 (02): : 751 - 764
  • [33] Morphological and physiological characterization of different genotypes of faba bean under heat stress
    Siddiqui, Manzer H.
    Al-Khaishany, Mutahhar Y.
    Al-Qutami, Mohammed A.
    Al-Whaibi, Mohamed H.
    Grover, Anil
    Ali, Hayssam M.
    Al-Wahibi, Mona Suliman
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2015, 22 (05) : 656 - 663
  • [34] Molecular and biochemical studies for heat tolerance on four cotton genotypes
    Mohamed, H. I.
    Abdel-Hamid, A. M. E.
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2013, 18 (06): : 8823 - 8831
  • [35] Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance
    Wang, Yuguang
    Stevanato, Piergiorgio
    Lv, Chunhua
    Li, Renren
    Geng, Gui
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (21) : 6056 - 6073
  • [36] Comparison of microstructure and physiological response of the leaves of six Rosa rugosa genotypes under drought stress
    Li, Lulu
    Zhu, Huali
    Ju, Yiqian
    Lv, Zhuo
    Qian, Cheng
    Zhang, Cuiping
    Lu, Yizeng
    Wang, Jingcai
    Li, Wei
    ORNAMENTAL PLANT RESEARCH, 2024, 4
  • [37] Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry
    Wang, Yi
    Jiang, Wei
    Cheng, Junsen
    Guo, Wei
    Li, Yongquan
    Li, Chenlei
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (03):
  • [38] Differential biochemical and physiological responses to cotton leaf curl virus infection in contrasting cotton genotypes
    Taranjeet Kaur
    Shiwani Mandhania
    Vikram Singh
    Rashi Datten
    Prakash Banakar
    Karmal Malik
    K. Sankaranarayanan
    Minakshi Jattan
    Sandeep Kumar
    Anil Kumar Saini
    Anil Jakhar
    Acta Physiologiae Plantarum, 2024, 46
  • [39] Differential biochemical and physiological responses to cotton leaf curl virus infection in contrasting cotton genotypes
    Kaur, Taranjeet
    Mandhania, Shiwani
    Singh, Vikram
    Datten, Rashi
    Banakar, Prakash
    Malik, Karmal
    Sankaranarayanan, K.
    Jattan, Minakshi
    Kumar, Sandeep
    Saini, Anil Kumar
    Jakhar, Anil
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (04)
  • [40] Proteomic analysis of Aspergillus niger 3.316 under heat stress
    Deng, Xiangyu
    Du, Bin
    Zhu, Fengmei
    Gao, Yanan
    Li, Jun
    MICROBIOLOGYOPEN, 2020, 9 (05):