Abdominal Organs and Pan-Cancer Segmentation Based on Self-supervised Pre-training and Self-training

被引:0
作者
Li, He [1 ]
Han, Meng [1 ]
Wang, Guotai [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
来源
FAST, LOW-RESOURCE, AND ACCURATE ORGAN AND PAN-CANCER SEGMENTATION IN ABDOMEN CT, FLARE 2023 | 2024年 / 14544卷
关键词
Semi-supervised learning; Self-supervised learning; Pseudo labels;
D O I
10.1007/978-3-031-58776-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the effective progress in automatic abdominal multi-organ segmentation methods based on deep learning, there are still few studies on general models for abdominal organ and pan-cancer segmentation. Additionally, the manual annotation of organs and tumors from CT scans is a time-consuming and labor-intensive process. To deal with these problems, an efficient two-stage framework combining self-supervised pre-training and self-training is proposed. Specifically, in the first stage, we adopt the Model Genesis method for image reconstruction to promote the model to learn effective anatomical representation information, thereby improving the model's perception of anatomical structures in downstream segmentation tasks and generating high-quality tumor pseudo-labels. Afterward, we fuse partial organ fine-standard of labeled data with pseudo-labels to improve the organ labeling quality. In the second stage, we overlay the generated tumor pseudo-labels onto the corresponding regions of the organ pseudo-labels, and the final pseudo-label images are used to train the nnU-Net model for efficient inference. The proposed method has been evaluated on the FLARE2023 validation cases, and get a relatively good segmentation performance. The average DSC and NSD for organs are 91.51% and 95.52%, respectively. For tumors, the average DSC is 43.47%, and the average NSD is 33.81%. In addition, the average running time and area under the GPU memorytime curve are 85.4 s and 246157.2 MB, respectively. On the test set, we achieved average organ and tumor DSC of 92.17% and 54.99%, respectively, and average inference time of 95.83 s. Our code is publicly available at https://github.com/lihe-CV/HiLab_FLARE23
引用
收藏
页码:130 / 142
页数:13
相关论文
共 22 条
[1]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[2]   Forecasting adverse surgical events using self-supervised transfer learning for physiological signals [J].
Chen, Hugh ;
Lundberg, Scott M. ;
Erion, Gabriel ;
Kim, Jerry H. ;
Lee, Su-In .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[3]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[4]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[5]  
Gatidis S., 2023, RES SQUARE, DOI 10.21203/rs.3.rs-2572595/v1
[6]   A who e-body FDG-PET/CT Dataset with manually annotated Tumor Lesions [J].
Gatidis, Sergios ;
Hepp, Tobias ;
Frueh, Marcel ;
La Fougere, Christian ;
Nikolaou, Konstantin ;
Pfannenberg, Christina ;
Scholkopf, Bernhard ;
Kustner, Thomas ;
Cyran, Clemens ;
Rubin, Daniel .
SCIENTIFIC DATA, 2022, 9 (01)
[7]   The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge [J].
Heller, Nicholas ;
Isensee, Fabian ;
Maier-Hein, Klaus H. ;
Hou, Xiaoshuai ;
Xie, Chunmei ;
Li, Fengyi ;
Nan, Yang ;
Mu, Guangrui ;
Lin, Zhiyong ;
Han, Miofei ;
Yao, Guang ;
Gao, Yaozong ;
Zhang, Yao ;
Wang, Yixin ;
Hou, Feng ;
Yang, Jiawei ;
Xiong, Guangwei ;
Tian, Jiang ;
Zhong, Cheng ;
Ma, Jun ;
Rickman, Jack ;
Dean, Joshua ;
Stai, Bethany ;
Tejpaul, Resha ;
Oestreich, Makinna ;
Blake, Paul ;
Kaluzniak, Heather ;
Raza, Shaneabbas ;
Rosenberg, Joel ;
Moore, Keenan ;
Walczak, Edward ;
Rengel, Zachary ;
Edgerton, Zach ;
Vasdev, Ranveer ;
Peterson, Matthew ;
McSweeney, Sean ;
Peterson, Sarah ;
Kalapara, Arveen ;
Sathianathen, Niranjan ;
Papanikolopoulos, Nikolaos ;
Weight, Christopher .
MEDICAL IMAGE ANALYSIS, 2021, 67
[8]  
Heller N, 2020, J CLIN ONCOL, V38
[9]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[10]  
Simpson AL, 2019, Arxiv, DOI arXiv:1902.09063