Drug repurposing for non-small cell lung cancer by predicting drug response using pathway-level graph convolutional network

被引:0
作者
Anjusha, I. T. [1 ]
Nazeer, K. A. Abdul [1 ]
Saleena, N. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Comp Sci & Engn, Kozhikode, India
关键词
Drug response prediction; drug repurposing; NSCLC; deep learning; gene expression; pathways; graph neural networks; graph convolutional network; ENCYCLOPEDIA;
D O I
10.1142/S0219720025500015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug repurposing is the process of identifying new clinical indications for an existing drug. Some of the recent studies utilized drug response prediction models to identify drugs that can be repurposed. By representing cell-line features as a pathway-pathway interaction network, we can better understand the connections between cellular processes and drug response mechanisms. Existing deep learning models for drug response prediction do not integrate known biological pathway-pathway interactions into the model. This paper presents a drug response prediction model that applies a graph convolution operation on a pathway-pathway interaction network to represent features of cancer cell-lines effectively. The model is used to identify potential drug repurposing candidates for Non-Small Cell Lung Cancer (NSCLC). Experiment results show that the inclusion of graph convolutional model applied on a pathway-pathway interaction network makes the proposed model more effective in predicting drug response than the state-of-the-art methods. Specifically, the model has shown better performance in terms of Root Mean Squared Error, Coefficient of Determination, and Pearson's Correlation Coefficient when applied to the GDSC1000 dataset. Also, most of the drugs that the model predicted as top candidates for NSCLC treatment are either undergoing clinical studies or have some evidence in the PubMed literature database.
引用
收藏
页数:17
相关论文
共 25 条
[1]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]   Predicting drug response of tumors from integrated genomic profiles by deep neural networks [J].
Chiu, Yu-Chiao ;
Chen, Hung-I Harry ;
Zhang, Tinghe ;
Zhang, Songyao ;
Gorthi, Aparna ;
Wang, Li-Ju ;
Huang, Yufei ;
Chen, Yidong .
BMC MEDICAL GENOMICS, 2019, 12 (Suppl 1)
[4]   Graph Transformer for Drug Response Prediction [J].
Chu, Thang ;
Nguyen, Thuy Trang ;
Hai, Bui Duong ;
Nguyen, Quang Huy ;
Nguyen, Tuan .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) :1065-1072
[5]   Pathway-Guided Deep Neural Network toward Interpretable and Predictive Modeling of Drug Sensitivity [J].
Deng, Lei ;
Cai, Yideng ;
Zhang, Wenhao ;
Yang, Wenyi ;
Gao, Bo ;
Liu, Hui .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (10) :4497-4505
[6]  
drugbank, DRUGBANK DATABASE
[7]   HiDRA: Hierarchical Network for Drug Response Prediction with Attention [J].
Jin, Iljung ;
Nam, Hojung .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (08) :3858-3867
[8]   Graph Convolutional Network for Drug Response Prediction Using Gene Expression Data [J].
Kim, Seonghun ;
Bae, Seockhun ;
Piao, Yinhua ;
Jo, Kyuri .
MATHEMATICS, 2021, 9 (07)
[9]   PubChem Substance and Compound databases [J].
Kim, Sunghwan ;
Thiessen, Paul A. ;
Bolton, Evan E. ;
Chen, Jie ;
Fu, Gang ;
Gindulyte, Asta ;
Han, Lianyi ;
He, Jane ;
He, Siqian ;
Shoemaker, Benjamin A. ;
Wang, Jiyao ;
Yu, Bo ;
Zhang, Jian ;
Bryant, Stephen H. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1202-D1213
[10]  
Kipf T. N., 2017, 5 INT C LEARN REPR I