Are Non-Gaussian Kernels Suitable for Ensemble Mixture Model Filtering?

被引:0
作者
Popov, Audrey A. [1 ]
Zanetti, Renato [2 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
来源
2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024 | 2024年
关键词
Non-linear Estimation; High-dimensional filtering; Kernel Density Estimation; Epanechnikov Kernel; DATA ASSIMILATION;
D O I
10.23919/FUSION59988.2024.10706465
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the high-dimensional setting, Gaussian mixture kernel density estimates become increasingly suboptimal. In this work we aim to show that it is practical to instead use the optimal multivariate Epanechnikov kernel. We make use of this optimal Epanechnikov mixture kernel density estimate for the sequential filtering scenario through what we term the ensemble Epanechnikov mixture filter (EnEMF). We provide a practical implementation of the EnEMF that is as cost efficient as the comparable ensemble Gaussian mixture filter. We then showcase that the EnEMF has a significant reduction in error per particle on the 40-variable Lorenz '96 system. We answer the titular question, "are non-Gaussian kernels suitable for ensemble mixture model filtering?" in the affirmative.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Popov AA, 2020, Arxiv, DOI [arXiv:2003.13162, 10.48550/arXiv.2003.13162, DOI 10.48550/ARXIV.2003.13162]
[2]  
Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
[3]  
2
[4]  
Asch M., 2016, DATA ASSIMILATION ME
[5]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: theory, algorithms, and software
[6]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[7]  
2
[8]  
Daum F, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), P540
[9]  
Deheuvels P., 1977, PUBLICATIONS LINSTIT, V22, P1
[10]  
Devroye Luc, 1985, Non-parametric Density Estimation: The L1 View