A COMPARISON OF CATEGORICAL AND TOPOLOGICAL ENTROPIES ON WEINSTEIN MANIFOLDS

被引:0
|
作者
Bae, Hanwool [1 ]
Lee, Sangjin [2 ]
机构
[1] Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, Seoul, South Korea
[2] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
categorical entropy; topological entropy; symplectic automorphism; VOLUME GROWTH; HOMOLOGY;
D O I
10.1017/nmj.2025.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a symplectic manifold, and let $\phi :W \to W$ be a symplectic automorphism. This automorphism induces an auto-equivalence $\Phi $ defined on the Fukaya category of W. In this paper, we prove that the categorical entropy of $\Phi $ provides a lower bound for the topological entropy of $\phi $ , where W is a Weinstein manifold and $\phi $ is compactly supported. Furthermore, motivated by [cCGG24], we propose a conjecture that generalizes the result of [New88, Prz80, Yom87].
引用
收藏
页数:30
相关论文
共 50 条