Non-vanishing of Maass form L-functions of cubic level at the central point

被引:0
作者
Wang, Hui [1 ]
Wang, Xin [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Maass cusp newforms; L-functions; non-vanishing; mollifiers; Kuznetsov trace formula; AUTOMORPHIC L-FUNCTIONS; CENTRAL L-VALUES; RANK;
D O I
10.1515/forum-2022-0362
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the method of mollification and the simple Kuznetsov trace formula, we study the central L-values of GL 2 Maass forms of cubic level and establish a positive-proportional non-vanishing result in the spectral aspect in short intervals.
引用
收藏
页数:25
相关论文
共 30 条
[1]  
Balkanova O., Frolenkov D., Non-vanishing of automorphic L-functions of prime power level, Monatsh. Math., 185, 1, pp. 17-41, (2018)
[2]  
Balkanova O., Huang B., Sodergren A., Non-vanishing of Maass form L-functions at the central point, Proc. Amer. Math. Soc., 149, 2, pp. 509-523, (2021)
[3]  
Blomer V., Khan R., Young M., Distribution of mass of holomorphic cusp forms, Duke Math. J., 162, 14, pp. 2609-2644, (2013)
[4]  
Duke W., The critical order of vanishing of automorphic L-functions with large level, Invent. Math., 119, 1, pp. 165-174, (1995)
[5]  
Gelbart S., Lectures on the Arthur–Selberg Trace Formula, 9, (1996)
[6]  
Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products, (2007)
[7]  
Gross B.H., Reeder M., Arithmetic invariants of discrete Langlands parameters, Duke Math. J., 154, 3, pp. 431-508, (2010)
[8]  
Hejhal D.A., The Selberg Trace Formula for PSL(2, R), Lecture Notes in Math, 2, (1983)
[9]  
Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, (2004)
[10]  
Iwaniec H., Sarnak P., The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros, Israel J. Math., 120, pp. 155-177, (2000)