Optimizing Hard Carbon Anodes from Agricultural Biomass for Superior Lithium and Sodium Ion Battery Performance

被引:2
|
作者
Naik, Pooja B. [1 ]
Reddy, Naveen S. [1 ]
Nataraj, S. K. [1 ]
Maiti, Uday N. [2 ]
Beere, Hemanth K. [1 ]
Yadav, Prahlad [1 ]
Jung, Hyun Y. [3 ,4 ]
Ghosh, Debasis [1 ,3 ]
机构
[1] Jain, Ctr Nano & Mat Sci, Jain Global Campus, Bangalore 562112, Karnataka, India
[2] Indian Inst Technol Guwahati, Dept Phys, Gauhati, India
[3] Gyeongsang Natl Univ, Dept Energy Engn, Jinju Si 52725, Gyeongnam, South Korea
[4] Gyeongsang Natl Univ, Dept Energy Syst Engn, Jinju Si, Gyeongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Biomass-derived carbon; Hard carbon; Li-ion batteries; Na-ion batteries; anode; PYROLYSIS;
D O I
10.1002/cssc.202400970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass-derived carbon materials are gaining attention for their environmental and economic advantages in waste resource recovery, particularly for their potential as high-energy materials for alkali metal ion storage. However, ensuring the reliability of secondary battery anodes remains a significant hurdle. Here, we report Areca Catechu sheath-inner part derived carbon (referred to as ASIC) as a high-performance anode for both rechargeable Li-ion (LIBs) and Na-ion batteries (SIBs). We explore the microstructure and electrochemical performance of ASIC materials synthesized at various pyrolysis temperatures ranging from 700 to 1400 degrees C. ASIC-9, pyrolyzed at 900 degrees C, exhibits multilayer stacked sheets with the highest specific surface area, and the least lateral size and stacking height. ASIC-14, pyrolyzed at 1400 degrees C, demonstrates the most ordered carbon structure with the least defect concentration and the highest stacking height and an increased lateral size. ASIC-9 achieves the highest capacities (676 mAh/g at 0.134 C) and rate performance (94 mAh/g at 13.4 C) for hosting Li+ ions, while ASIC-14 exhibits superior electrochemical performance for hosting Na+ ions, maintaining a high specific capacity after 300 cycles with over 99.5 % Coulombic efficiency. This comprehensive understanding of structure-property relationships paves the way for the practical utilization of biomass-derived carbon in various battery applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
    Xiao, Biwei
    Soto, Fernando A.
    Gu, Meng
    Han, Kee Sung
    Song, Junhua
    Wang, Hui
    Engelhard, Mark H.
    Murugesan, Vijayakumar
    Mueller, Karl T.
    Reed, David
    Sprenkle, Vincent L.
    Balbuena, Perla B.
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [2] Biomass derived hard carbon materials for sodium ion battery anodes: Exploring the influence of carbon source on structure and sodium storage performance
    Yan, Boting
    Han, Cheng
    Dai, Yiming
    Li, Mingyang
    Wu, Zhaoyang
    Gao, Xiangpeng
    FUEL, 2024, 371
  • [3] Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries
    Rios, Carolina del Mar Saavedra
    Simone, Virginie
    Simonin, Loic
    Martinet, Sebastien
    Dupont, Capucine
    BIOMASS & BIOENERGY, 2018, 117 : 32 - 37
  • [4] Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes
    Oh, E.-S. (esoh1@ulsan.ac.kr), 1600, Elsevier B.V., Netherlands (254):
  • [5] Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes
    Dou, Xinwei
    Hasa, Ivana
    Saurel, Damien
    Jauregui, Maria
    Buchholz, Daniel
    Rojo, Teofilo
    Passerini, Stefano
    CHEMSUSCHEM, 2018, 11 (18) : 3276 - 3285
  • [6] Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes
    Pillai, Manoj Muraleedharan
    Kalidas, Nathiya
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [7] Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries
    Gaddam, Rohit Ranganathan
    Yang, Dongfang
    Narayan, Ramanuj
    Raju, K. V. S. N.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    NANO ENERGY, 2016, 26 : 346 - 352
  • [8] Sodium-ion battery anodes from carbon depositions
    Wu, Jimmy
    Moradmand, Simin
    Pang, Wei Kong
    Allen, Jessica
    Sharma, Neeraj
    ELECTROCHIMICA ACTA, 2021, 379
  • [9] From Waste Biomass to Hard Carbon Anodes: Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries
    Jin, Yanghao
    Shi, Ziyi
    Han, Tong
    Yang, Hanmin
    Asfaw, Habtom Desta
    Gond, Ritambhara
    Younesi, Reza
    Jonsson, Par G.
    Yang, Weihong
    PROCESSES, 2023, 11 (03)
  • [10] Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries
    Prabakar, S. J. Richard
    Jeong, Jaehyang
    Pyo, Myoungho
    ELECTROCHIMICA ACTA, 2015, 161 : 23 - 31