Percolation as a confinement order parameter in Z2 lattice gauge theories

被引:2
作者
Linsel, Simon M. [1 ,2 ]
Bohrdt, Annabelle [2 ,3 ]
Homeier, Lukas [1 ,2 ]
Pollet, Lode [1 ,2 ]
Grusdt, Fabian [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Univ Regensburg, Inst Theoret Phys, D-93053 Regensburg, Germany
基金
欧洲研究理事会;
关键词
SIMULATION; DISORDER; SYSTEMS; MODEL;
D O I
10.1103/PhysRevB.110.L241101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lattice gauge theories (LGTs) were introduced in 1974 by Wilson to study quark confinement. These models have been shown to exhibit (de)confined phases, yet it remains challenging to define experimentally accessible order parameters. Here we propose percolation-inspired order parameters (POPs) to probe confinement of dynamical matter in Z(2) LGTs using electric field basis snapshots accessible to quantum simulators. We apply the POPs to study a classical Z(2) LGT and find a confining phase up to temperature T = infinity in two dimensions (critical T-c, i.e., finite-T phase transition, in three dimensions) for any nonzero density of Z(2) charges. Further, using quantum Monte Carlo we demonstrate that the POPs reproduce the square lattice Fradkin-Shenker phase diagram at T = infinity and explore the phase diagram at T > 0. The correlation length exponent coincides with the one of the three-dimensional Ising universality class and we determine the POP critical exponent characterizing percolation. Our proposed POPs provide a geometric perspective of confinement and are directly accessible to snapshots obtained in quantum simulators, making them suitable as a probe for quantum spin liquids.
引用
收藏
页数:6
相关论文
共 59 条
[1]  
aps, ABOUT US, DOI [10.1103/PhysRevB.110.L241101, DOI 10.1103/PHYSREVB.110.L241101]
[2]   Broken symmetry and fractionalized flux strings in a staggered U(1) pure gauge theory [J].
Banerjee, A. ;
Banerjee, D. ;
Kanwar, G. ;
Mariani, A. ;
Rindlisbacher, T. ;
Wiese, U. -J .
PHYSICAL REVIEW D, 2024, 109 (01)
[3]   The (2+1)-d U(1) quantum link model masquerading as deconfined criticality [J].
Banerjee, D. ;
Jiang, F. -J. ;
Widmer, P. ;
Wiese, U-J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[4]   Exploring bosonic and fermionic link models on (3 [J].
Banerjee, Debasish ;
Huffman, Emilie ;
Rammelmueller, Lukas .
PHYSICAL REVIEW RESEARCH, 2022, 4 (03)
[5]   Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to Z2 lattice gauge theories [J].
Barbiero, Luca ;
Schweizer, Christian ;
Aidelsburger, Monika ;
Demler, Eugene ;
Goldman, Nathan ;
Grusdt, Fabian .
SCIENCE ADVANCES, 2019, 5 (10)
[6]  
Baxter R., 1989, Exactly Solved Models in Statistical Mechanics
[7]  
Binder K, 2010, GRAD TEXTS PHYS, P1, DOI 10.1007/978-3-642-03163-2
[8]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[9]  
Botzung T, 2023, Arxiv, DOI arXiv:2311.14338
[10]  
BROADBENT S. R., 1957, MATH PROC CAMBRIDGE, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680, 10.1017/s0305004100032680]