A Second-Order Scheme with Nonuniform Time Grids for the Two-Dimensional Time-Fractional Zakharov-Kuznetsov Equation

被引:0
|
作者
Chen, Lisha [1 ]
Wang, Zhibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Zakharov-Kuznetsov (ZK) equation; Existence; Stability; Convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; GRADED MESHES; NUMERICAL-METHOD;
D O I
10.1007/s42967-024-00449-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations
    Jorge, MC
    Cruz-Pacheco, G
    Mier-y-Teran-Romero, L
    Smyth, NF
    CHAOS, 2005, 15 (03)
  • [42] A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations
    Liao, Hong-lin
    Tang, Tao
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 414
  • [43] Numerical investigation of generalized perturbed Zakharov-Kuznetsov equation of fractional order in dusty plasma
    Ali, Nasir
    Nawaz, Rashid
    Zada, Laiq
    Nisar, Kottakkaran Sooppy
    Ali, Zahid
    Jamshed, Wasim
    Hussain, Syed M.
    Akgul, Esra Karatas
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [44] A second-order difference scheme for the time fractional substantial diffusion equation
    Hao, Zhaopeng
    Cao, Wanrong
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 54 - 69
  • [45] Hyperbolic tangent solution to the conformable time fractional Zakharov-Kuznetsov Equation in 3D space
    Korkmaz, Alper
    Hepson, Ozlem Ersoy
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [46] Lie symmetry analysis, exact solutions and conservation laws for the time fractional modified Zakharov-Kuznetsov equation
    Baleanu, Dumitru
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2017, 22 (06): : 861 - 876
  • [47] On group analysis of the time fractional extended (2+1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    Cui, Ping
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 178 : 407 - 421
  • [48] INVESTIGATION OF THE TIME FRACTIONAL GENERALIZED (2+1)-DIMENSIONAL ZAKHAROV-KUZNETSOV EQUATION WITH SINGLE-POWER LAW NONLINEARITY
    Liu, Jian-Gen
    Zhang, Yu-Feng
    Wang, Jing-Jing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)
  • [49] A Linearized Second-Order Difference Scheme for the Nonlinear Time-Fractional Fourth-Order Reaction-Diffusion Equation
    Sun, Hong
    Sun, Zhi-zhong
    Du, Rui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) : 1168 - 1190
  • [50] A fourth-order compact ADI scheme for solving a two-dimensional time-fractional reaction-subdiffusion equation
    Roul, Pradip
    Rohil, Vikas
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (08) : 2039 - 2055