In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
机构:
Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R ChinaXuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
Wang, Fenling
Zhao, Yanmin
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R ChinaXuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
Zhao, Yanmin
Chen, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaXuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
Chen, Chen
Wei, Yabing
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R ChinaXuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
Wei, Yabing
Tang, Yifa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R ChinaXuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China