A Second-Order Scheme with Nonuniform Time Grids for the Two-Dimensional Time-Fractional Zakharov-Kuznetsov Equation

被引:0
|
作者
Chen, Lisha [1 ]
Wang, Zhibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Zakharov-Kuznetsov (ZK) equation; Existence; Stability; Convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; GRADED MESHES; NUMERICAL-METHOD;
D O I
10.1007/s42967-024-00449-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Soliton solutions of time-fractional modified Korteweg-de-Vries Zakharov-Kuznetsov equation and modulation instability analysis
    Onder, Ismail
    Secer, Aydin
    Bayram, Mustafa
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [22] A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation
    Jianfeng Liu
    Tingchun Wang
    Teng Zhang
    Numerical Algorithms, 2023, 92 : 1153 - 1182
  • [23] A second order difference method combined with time two-grid algorithm for two-dimensional time-fractional Fisher equation
    Yang, Wenguang
    Wang, Zhibo
    Ou, Caixia
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (11) : 1255 - 1269
  • [24] An implicit nonlinear difference scheme for two-dimensional time-fractional Burgers' equation with time delay
    Xiao, Mingcong
    Wang, Zhibo
    Mo, Yan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 2919 - 2934
  • [25] An implicit nonlinear difference scheme for two-dimensional time-fractional Burgers’ equation with time delay
    Mingcong Xiao
    Zhibo Wang
    Yan Mo
    Journal of Applied Mathematics and Computing, 2023, 69 : 2919 - 2934
  • [26] Global Well-posedness and Global Attractor for Two-dimensional Zakharov-Kuznetsov Equation
    Min Jie Shan
    Acta Mathematica Sinica, English Series, 2020, 36 : 969 - 1000
  • [27] Global Well-posedness and Global Attractor for Two-dimensional Zakharov-Kuznetsov Equation
    Shan, Min Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (09) : 969 - 1000
  • [28] Closed form wave solutions to the time fractional Boussinesq-type equation and the Zakharov-Kuznetsov equation
    Islam, M. Nurul
    Khan, Md Ashrafuzzaman
    Akbar, M. Ali
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2019, 47 (02): : 149 - 160
  • [29] Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Wang, Ying
    Wang, Gang
    Bu, Linlin
    Mei, Liquan
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 419 - 451
  • [30] A second-order numerical scheme for the time-fractional partial differential equations with a time delay
    Choudhary, Renu
    Singh, Satpal
    Kumar, Devendra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):