A Second-Order Scheme with Nonuniform Time Grids for the Two-Dimensional Time-Fractional Zakharov-Kuznetsov Equation

被引:0
|
作者
Chen, Lisha [1 ]
Wang, Zhibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Zakharov-Kuznetsov (ZK) equation; Existence; Stability; Convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; GRADED MESHES; NUMERICAL-METHOD;
D O I
10.1007/s42967-024-00449-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A Linearized Second-Order Difference Scheme for the Nonlinear Time-Fractional Fourth-Order Reaction-Diffusion Equation
    Sun, Hong
    Sun, Zhi-zhong
    Du, Rui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) : 1168 - 1190
  • [22] A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation
    Chen, Hongbin
    Xu, Da
    Cao, Jiliang
    Zhou, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (05) : 1100 - 1117
  • [23] A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation
    Pradip Roul
    Vikas Rohil
    Numerical Algorithms, 2022, 90 : 1357 - 1387
  • [24] A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation
    Roul, Pradip
    Rohil, Vikas
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1357 - 1387
  • [25] An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile-immobile equation
    Jiang, Huifa
    Xu, Da
    Qiu, Wenlin
    Zhou, Jun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
  • [26] A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations
    Liao, Hong-lin
    Tang, Tao
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 414
  • [27] Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation
    Wang, Yajun
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (03):
  • [28] An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation
    Liu, Songshu
    Feng, Lixin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [29] A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation
    Wang, Zhibo
    Vong, Seakweng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (05) : 970 - 979
  • [30] A Second-Order Accurate Difference Scheme for the Two-Dimensional Burgers' System
    Xu, Pei-Pei
    Sun, Zhi-Zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (01) : 172 - 194