A Second-Order Scheme with Nonuniform Time Grids for the Two-Dimensional Time-Fractional Zakharov-Kuznetsov Equation

被引:0
|
作者
Chen, Lisha [1 ]
Wang, Zhibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Zakharov-Kuznetsov (ZK) equation; Existence; Stability; Convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; GRADED MESHES; NUMERICAL-METHOD;
D O I
10.1007/s42967-024-00449-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation
    Chen, Lisha
    Wang, Zhibo
    Vong, Seakweng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5777 - 5794
  • [2] Time-Fractional Nonlinear Dispersive Type of the Zakharov-Kuznetsov Equation via HAFSTM
    Mishra, Hradyesh Kumar
    Pandey, Rishi Kumar
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 97 - 110
  • [3] Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Abbas, Muhammad
    Zainab, Iqra
    Gillani, Syeda Rijaa
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 607 - 622
  • [4] A second-order scheme for a time-fractional diffusion equation
    Cen, Zhongdi
    Huang, Jian
    Le, Anbo
    Xu, Aimin
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 79 - 85
  • [5] A Second-Order Scheme for the Generalized Time-Fractional Burgers' Equation
    Chawla, Reetika
    Kumar, Devendra
    Singh, Satpal
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (01):
  • [6] Well-Posedness for the Two-Dimensional Zakharov-Kuznetsov Equation
    Shan, Minjie
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2020, 63 (01): : 67 - 95
  • [7] A Fast Second-Order ADI Finite Difference Scheme for the Two-Dimensional Time-Fractional Cattaneo Equation with Spatially Variable Coefficients
    Nong, Lijuan
    Yi, Qian
    Chen, An
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [8] Traveling wave solutions of conformable time-fractional Zakharov-Kuznetsov and Zoomeron equations
    Odabasi, Meryem
    CHINESE JOURNAL OF PHYSICS, 2020, 64 : 194 - 202
  • [9] Time-dependent two-dimensional Zakharov-Kuznetsov equation in the electron-positron-ion plasmas
    Bhrawy, Ali H.
    Alofi, A. S.
    Abdelkawy, M. A.
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (04): : 1804 - 1813
  • [10] Conservation laws, exact solutions and stability analysis for time-fractional extended quantum Zakharov-Kuznetsov equation
    Abbas, Naseem
    Hussain, Akhtar
    Ibrahim, Tarek F.
    Juma, Manal Yagoub
    Birkea, Fathea M. Osman
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)