A Second-Order Scheme with Nonuniform Time Grids for the Two-Dimensional Time-Fractional Zakharov-Kuznetsov Equation

被引:0
|
作者
Chen, Lisha [1 ]
Wang, Zhibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional Zakharov-Kuznetsov (ZK) equation; Existence; Stability; Convergence; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; GRADED MESHES; NUMERICAL-METHOD;
D O I
10.1007/s42967-024-00449-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical method for the two-dimensional time-fractional Zakharov-Kuznetsov (ZK) equation. By the method of order reduction, the model is first transformed into an equivalent system. A nonlinear difference scheme is then proposed to solve the equivalent model with min{2,r alpha}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{2, r\alpha \}$$\end{document}-th order accuracy in time and second-order accuracy in space, where alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} is the fractional order and the grading parameter r >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\geqslant 1$$\end{document}. The existence of the numerical solution is carefully studied by the renowned Browder fixed point theorem. With the help of the Gr & ouml;nwall inequality and some crucial skills, we analyze the unconditional stability and convergence of the proposed scheme based on the energy method. Finally, numerical experiments are given to illustrate the correctness of our theoretical analysis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation
    Chen, Lisha
    Wang, Zhibo
    Vong, Seakweng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5777 - 5794
  • [2] A Second-Order Scheme for the Generalized Time-Fractional Burgers' Equation
    Chawla, Reetika
    Kumar, Devendra
    Singh, Satpal
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (01):
  • [3] A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions
    Khibiev, Aslanbek
    Alikhanov, Anatoly
    Huang, Chengming
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 101 - 117
  • [4] A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Liu, Jianfeng
    Wang, Tingchun
    Zhang, Teng
    NUMERICAL ALGORITHMS, 2023, 92 (02) : 1153 - 1182
  • [5] A Fast Second-Order ADI Finite Difference Scheme for the Two-Dimensional Time-Fractional Cattaneo Equation with Spatially Variable Coefficients
    Nong, Lijuan
    Yi, Qian
    Chen, An
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [6] WELL-POSEDNESS FOR THE TWO-DIMENSIONAL MODIFIED ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Pastor, Ademir
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (04) : 1323 - 1339
  • [7] A second-order numerical scheme for the time-fractional partial differential equations with a time delay
    Renu Choudhary
    Satpal Singh
    Devendra Kumar
    Computational and Applied Mathematics, 2022, 41
  • [8] A second-order numerical scheme for the time-fractional partial differential equations with a time delay
    Choudhary, Renu
    Singh, Satpal
    Kumar, Devendra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03)
  • [9] Second-order convergent scheme for time-fractional partial differential equations with a delay in time
    Renu Choudhary
    Devendra Kumar
    Satpal Singh
    Journal of Mathematical Chemistry, 2023, 61 : 21 - 46
  • [10] Second-order convergent scheme for time-fractional partial differential equations with a delay in time
    Choudhary, Renu
    Kumar, Devendra
    Singh, Satpal
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (01) : 21 - 46