Performance Comparison of Oral, Laryngeal and Thoracic Sounds in the Detection of COVID-19 by Employing Machine Learning Techniques

被引:0
作者
Gozuacik, Necip [1 ,4 ]
Serbes, Gorkem [2 ]
Kara, Eyup [3 ]
Atar, Eren [1 ]
Sakar, C. Okan [1 ]
Yener, H. Murat [3 ]
Borekci, Sermin [3 ]
Korkmazer, Bora [3 ]
Karaali, Ridvan [3 ]
Kara, Halide [3 ]
Gulmez, Zuleyha [3 ]
Cogen, Talha [3 ]
Atas, Ahmet [3 ]
机构
[1] Bahcesehir Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
[2] Yildiz Tekn Univ, Biyomed Muhendisligi Bolumu, Istanbul, Turkey
[3] Istanbul Univ Cerrahpasa, Istanbul, Turkey
[4] Siemens Advanta, Istanbul, Turkey
来源
2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2022年
关键词
COVID-19; Speech Processing; Telediagnosis; E-Health; Classification; Signal Processing; Artificial Intelligence;
D O I
10.1109/SIU55565.2022.9864842
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
COVID-19 can directly or indirectly cause lung involvements by crossing the upper airways. It is essential to quickly detect the lung involvement condition and to follow up and treat these patients by early hospitalization. In recent COVID-19 diagnosis procedure, PCR testing is applied to the samples taken from the patients and a quarantine period is applied to the patient until the test results are received. As a complement to PCR tests and for faster diagnosis, thin-section lung computed tomography (CT) imaging is used in COVID-19 patients. In this study, it is aimed to develop a method that is as reliable as CT, and compared to CT, less risky, more accessible, and less costly for the diagnosis of COVID-19 disease. For this purpose, first speech and cough sounds from the oral, laryngeal and thoracic regions of COVID-19 patients and healthy individuals were obtained with the multi-channel voice recording system we proposed, the obtained data were processed with machine learning methods and their accuracies in COVID-19 diagnosis were presented comparatively. In our study, the best results were obtained with the features extracted from the cough sounds taken from the oral region.
引用
收藏
页数:4
相关论文
共 11 条
[1]   Sudden and persistent dysphonia within the framework of COVID-19: The case report of a nurse [J].
Buselli, Rodolfo ;
Corsi, Martina ;
Necciari, Gabriele ;
Pistolesi, Piero ;
Baldanzi, Sigrid ;
Chiumiento, Martina ;
Del Lupo, Elena ;
Del Guerra, Paolo ;
Cristaudo, Alfonso .
BRAIN, BEHAVIOR, & IMMUNITY - HEALTH, 2020, 9
[2]   COVID-19 detection with traditional and deep features on cough acoustic signals [J].
Erdogan, Yunus Emre ;
Narin, Ali .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136 (136)
[3]   COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings [J].
Laguarta, Jordi ;
Hueto, Ferran ;
Subirana, Brian .
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2020, 1 (01) :275-281
[4]   Features of Mild-to-Moderate COVID-19 Patients With Dysphonia [J].
Lechien, Jerome R. ;
Chiesa-Estomba, Carlos M. ;
Cabaraux, Pierre ;
Mat, Quentin ;
Huet, Kathy ;
Harmegnies, Bernard ;
Horoi, Mihaela ;
Le Bon, Serge Daniel ;
Rodriguez, Alexandra ;
Dequanter, Didier ;
Hans, Stephane ;
Crevier-Buchman, Lise ;
Hochet, Baptiste ;
Distinguin, Lea ;
Chekkoury-Idrissi, Younes ;
Circiu, Marta ;
El Afia, Fahd ;
Barillari, Maria Rosaria ;
Cammaroto, Giovanni ;
Fakhry, Nicolas ;
Michel, Justin ;
Radulesco, Thomas ;
Martiny, Delphine ;
Lavigne, Philippe ;
Jouffe, Lionel ;
Descamps, Geraldine ;
Journe, Fabrice ;
Trecca, Eleonora M. C. ;
Hsieh, Julien ;
Delgado, Irene Lopez ;
Calvo-Henriquez, Christian ;
Vergez, Sebastien ;
Khalife, Mohamad ;
Molteni, Gabriele ;
Mannelli, Giuditta ;
Cantarella, Giovanna ;
Tucciarone, Manuel ;
Souchay, Christel ;
Leich, Pierre ;
Ayad, Tareck ;
Saussez, Sven .
JOURNAL OF VOICE, 2022, 36 (02) :249-255
[5]   Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study [J].
Lechien, Jerome R. ;
Chiesa-Estomba, Carlos M. ;
De Siati, Daniele R. ;
Horoi, Mihaela ;
Le Bon, Serge D. ;
Rodriguez, Alexandra ;
Dequanter, Didier ;
Blecic, Serge ;
El Afia, Fahd ;
Distinguin, Lea ;
Chekkoury-Idrissi, Younes ;
Hans, Stephane ;
Lopez Delgado, Irene ;
Calvo-Henriquez, Christian ;
Lavigne, Philippe ;
Falanga, Chiara ;
Barillari, Maria Rosaria ;
Cammaroto, Giovanni ;
Khalife, Mohamad ;
Leich, Pierre ;
Souchay, Christel ;
Rossi, Camelia ;
Journe, Fabrice ;
Hsieh, Julien ;
Edjlali, Myriam ;
Carlier, Robert ;
Ris, Laurence ;
Lovato, Andrea ;
De Filippis, Cosimo ;
Coppee, Frederique ;
Fakhry, Nicolas ;
Ayad, Tareck ;
Saussez, Sven .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2020, 277 (08) :2251-2261
[6]   Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath [J].
Lella, Kranthi Kumar ;
Pja, Alphonse .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) :1319-1334
[7]   Project Achoo: A Practical Model and Application for COVID-19 Detection From Recordings of Breath, Voice, and Cough [J].
Ponomarchuk, Alexander ;
Burenko, Ilya ;
Malkin, Elian ;
Nazarov, Ivan ;
Kokh, Vladimir ;
Avetisian, Manvel ;
Zhukov, Leonid .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (02) :175-187
[8]   A Cough-Based Algorithm for Automatic Diagnosis of Pertussis [J].
Pramono, Renard Xaviero Adhi ;
Imtiaz, Syed Anas ;
Rodriguez-Villegas, Esther .
PLOS ONE, 2016, 11 (09)
[9]   Machine Learning-based Voice Assessment for the Detection of Positive and Recovered COVID-19 Patients [J].
Robotti, Carlo ;
Costantini, Giovanni ;
Saggio, Giovanni ;
Cesarini, Valerio ;
Calastri, Anna ;
Maiorano, Eugenia ;
Piloni, Davide ;
Perrone, Tiziano ;
Sabatini, Umberto ;
Ferretti, Virginia Valeria ;
Cassaniti, Irene ;
Baldanti, Fausto ;
Gravina, Andrea ;
Sakib, Ahmed ;
Alessi, Elena ;
Pietrantonio, Filomena ;
Pascucci, Matteo ;
Casali, Daniele ;
Zarezadeh, Zakarya ;
Del Zoppo, Vincenzo ;
Pisani, Antonio ;
Benazzo, Marco .
JOURNAL OF VOICE, 2024, 38 (03) :796e1-796e13
[10]   A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform [J].
Sakar, C. Okan ;
Serbes, Gorkem ;
Gunduz, Aysegul ;
Tunc, Hunkar C. ;
Nizam, Hatice ;
Sakar, Betul Erdogdu ;
Tutuncu, Melih ;
Aydin, Tarkan ;
Isenkul, M. Erdem ;
Apaydin, Hulya .
APPLIED SOFT COMPUTING, 2019, 74 :255-263