Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction

被引:0
作者
Meng, Xiangfu [1 ]
Bai, Yanbo [1 ]
Li, Minghao [2 ]
Cai, Ziang [1 ]
机构
[1] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125000, Peoples R China
[2] North China Univ Technol, Sch Informat, Beijing 100000, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024 | 2024年 / 14880卷
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Transformer; Spatio-temporal feature correlation; Global feature mining;
D O I
10.1007/978-981-97-5678-0_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The primary challenge in traffic flow prediction centers on effectively capturing the spatio-temporal dependencies within traffic data. To address these challenges, we propose a Spatio-Temporal Feature Fusion Model based on Transformer and a Global Feature Mining Module. The aim is to overcome the high resource consumption issue of the Transformer model when processing large-scale traffic data, as well as its potential shortcomings in capturing subtle spatio-temporal dynamics. The model is capable of precisely capturing the spatio-temporal characteristics of traffic data, achieving seamless integration of temporal and spatial correlations, and revealing the interconnections between global and local features. Through extensive experiments on five real-world traffic datasets, the research results demonstrate a significant improvement in prediction accuracy of our proposed method compared to existing models.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 24 条
[11]   A combined method for short-term traffic flow prediction based on recurrent neural network [J].
Lu, Saiqun ;
Zhang, Qiyan ;
Chen, Guangsen ;
Seng, Dewen .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) :87-94
[12]   Spatiotemporal Traffic Flow Prediction with KNN and LSTM [J].
Luo, Xianglong ;
Li, Danyang ;
Yang, Yu ;
Zhang, Shengrui .
JOURNAL OF ADVANCED TRANSPORTATION, 2019, 2019
[13]   Deep learning for short-term traffic flow prediction [J].
Polson, Nicholas G. ;
Sokolov, Vadim O. .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 :1-17
[14]   Graph Neural Networks for Intelligent Transportation Systems: A Survey [J].
Rahmani, Saeed ;
Baghbani, Asiye ;
Bouguila, Nizar ;
Patterson, Zachary .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) :8846-8885
[15]   Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting [J].
Shao, Zezhi ;
Zhang, Zhao ;
Wang, Fei ;
Wei, Wei ;
Xu, Yongjun .
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, :4454-4458
[16]  
Song C, 2020, AAAI CONF ARTIF INTE, V34, P914
[17]  
Vaswani A, 2017, ADV NEUR IN, V30
[18]  
Wu ZH, 2019, Arxiv, DOI [arXiv:1906.00121, DOI 10.48550/ARXIV.1906.00121]
[19]  
Xu MX, 2021, Arxiv, DOI arXiv:2001.02908
[20]   Learning Dynamic and Hierarchical Traffic Spatiotemporal Features With Transformer [J].
Yan, Haoyang ;
Ma, Xiaolei ;
Pu, Ziyuan .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) :22386-22399