Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction

被引:0
作者
Meng, Xiangfu [1 ]
Bai, Yanbo [1 ]
Li, Minghao [2 ]
Cai, Ziang [1 ]
机构
[1] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125000, Peoples R China
[2] North China Univ Technol, Sch Informat, Beijing 100000, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024 | 2024年 / 14880卷
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Transformer; Spatio-temporal feature correlation; Global feature mining;
D O I
10.1007/978-981-97-5678-0_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The primary challenge in traffic flow prediction centers on effectively capturing the spatio-temporal dependencies within traffic data. To address these challenges, we propose a Spatio-Temporal Feature Fusion Model based on Transformer and a Global Feature Mining Module. The aim is to overcome the high resource consumption issue of the Transformer model when processing large-scale traffic data, as well as its potential shortcomings in capturing subtle spatio-temporal dynamics. The model is capable of precisely capturing the spatio-temporal characteristics of traffic data, achieving seamless integration of temporal and spatial correlations, and revealing the interconnections between global and local features. Through extensive experiments on five real-world traffic datasets, the research results demonstrate a significant improvement in prediction accuracy of our proposed method compared to existing models.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 24 条
[1]   Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting [J].
Cai, Ling ;
Janowicz, Krzysztof ;
Mai, Gengchen ;
Yan, Bo ;
Zhu, Rui .
TRANSACTIONS IN GIS, 2020, 24 (03) :736-755
[2]  
Chen CY, 2011, IEEE INT VEH SYM, P607, DOI 10.1109/IVS.2011.5940418
[3]  
Cheng XY, 2018, IEEE IJCNN
[4]  
Choi J, 2022, AAAI CONF ARTIF INTE, P6367
[5]   ST-Norm: Spatial and Temporal Normalization for Multi-variate Time Series Forecasting [J].
Deng, Jinliang ;
Chen, Xiusi ;
Jiang, Renhe ;
Song, Xuan ;
Tsang, Ivor W. .
KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, :269-278
[6]   Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting [J].
Guo, Shengnan ;
Lin, Youfang ;
Wan, Huaiyu ;
Li, Xiucheng ;
Cong, Gao .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) :5415-5428
[7]   Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting [J].
Hong, Wei-Chiang .
NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03) :583-593
[8]  
Jiang JW, 2024, Arxiv, DOI arXiv:2301.07945
[9]  
Li YG, 2018, Arxiv, DOI [arXiv:1707.01926, DOI 10.48550/ARXIV.1707.01926]
[10]   Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting [J].
Liu, Hangchen ;
Dong, Zheng ;
Jiang, Renhe ;
Deng, Jiewen ;
Deng, Jinliang ;
Chen, Quanjun ;
Song, Xuan .
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, :4125-4129