Nano UiO-66 and UiO-66-NH2 MOFs as Bifunctional Electrocatalysts for Water-Splitting: A Comparative Study

被引:0
|
作者
Abbas, Batol [1 ]
Ravindra, A. V. [1 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Phys & Nanotechnol, Kattankulathur 603203, Tamil Nadu, India
来源
MOLECULAR CATALYSIS | 2025年 / 578卷
关键词
Metal-organic frameworks; Oxygen Evolution Reaction; Hydrogen Evolution Reaction; Bifunctional; UiO; METAL-ORGANIC FRAMEWORKS; HYDROGEN-PRODUCTION; OXYGEN EVOLUTION; CARBON NITRIDE; NANOPARTICLES; DEGRADATION; CATALYST; REMOVAL;
D O I
10.1016/j.mcat.2025.115025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study focuses on the synthesis and comparative evaluation of nano UiO-66 (U) and UiO-66-NH2 (U-N) MOFs as bifunctional electrocatalysts for water-splitting. The U and U-N MOFs are synthesized via a convection solvothermal method, and their structural, optical, and electrochemical properties, along with their performance in the Oxygen Evolution Reaction (OER) and Hydrogen Evolution Reaction (HER), are comprehensively characterized. The XRD patterns confirm the high crystallinity of both U and U-N, while FTIR spectra indicate the presence of typical functional groups in these MOFs. The UV-Vis absorbance spectra reveal a red shift in U-N compared to U, signifying a reduced band gap energy due to amino functional groups. TEM images display distinct particle sizes and morphologies with U-N exhibiting agglomerated particles and a narrower size distribution. BET analysis demonstrates the porous nature of both MOFs, with U exhibiting a greater surface area. Electrochemical studies reveal that U-N exhibits superior OER activity, characterized by lower overpotential, and a lower Tafel slope, as well as exceptional stability under prolonged electrochemical conditions. The amine (NH2) groups in U-N are the primary factor contributing to its enhanced OER performance. Additionally, U-N displays a reduced band gap energy, promoting improved catalytic activity and sustained performance. On the other hand, the U MOF demonstrates promising HER activity, maintaining effective current density for a significant duration, albeit indicating the need for enhancements to ensure prolonged stability. The CV and Nyquist plots further reveal that the U-N MOF possesses a larger electrochemical surface area, higher sensitivity, and enhanced conductivity, attributed to the presence of amino (NH2) groups, leading to more efficient charge transport within the material. Overall, this comparative study underscores the potential of U-N as a highly efficient electrocatalyst for water-splitting applications, offering valuable insights for the design and development of advanced MOFbased electrocatalysts.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Kinetics of Water Adsorption in UiO-66 MOF
    Hossain, Mohammad I.
    Glover, T. Grant
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) : 10550 - 10558
  • [42] Water adsorption in UiO-66: the importance of defects
    Ghosh, Pritha
    Colon, Yamil J.
    Snurr, Randall Q.
    CHEMICAL COMMUNICATIONS, 2014, 50 (77) : 11329 - 11331
  • [43] Fluorescent probe for detection of formaldehyde based on UiO-66-NH2
    Li, Xiaolong
    Qu, Hongmei
    Wang, Yanfei
    Zhang, Xiaokun
    Bai, Lulu
    Wang, Zonghao
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 317
  • [44] Sodium Alginate/UiO-66-NH2 Nanocomposite for Phosphate Removal
    Lin, Xiaohang
    Xiong, Yuzhu
    Dong, Fuping
    NANOMATERIALS, 2024, 14 (14)
  • [45] Adsorption removal of sulfamethoxazole from water using UiO-66 and UiO-66-BC composites
    Ouyang, Jinbo
    Chen, Jian
    Ma, Shaoqing
    Xing, Xiaohong
    Zhou, Limin
    Liu, Zhirong
    Zhang, Chuntao
    PARTICUOLOGY, 2022, 62 : 71 - 78
  • [46] Varied CO2 photoreduction activities of UiO-66-NH2 MOFs with different aggregation morphologies
    Zhang, Shu-Ran
    Zou, Yan-Hong
    Wang, Hai-Ning
    Xu, Guang-Juan
    Xie, Wei
    Xu, Na
    Xu, Yan-Hong
    Lan, Ya-Qian
    CHEMICAL COMMUNICATIONS, 2024, 60 (98) : 14641 - 14644
  • [47] CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66
    Stawowy, Michalina
    Ciesielski, Radoslaw
    Maniecki, Tomasz
    Matus, Krzysztof
    Luzny, Rafal
    Trawczynski, Janusz
    Silvestre-Albero, Joaquin
    Lamacz, Agata
    CATALYSTS, 2020, 10 (01)
  • [48] Immobilization of strong field ligands on UiO-66 metal organic frameworks (UiO66-MOFs) surface and their catalysis applications
    Elumalai, Palani
    Madrahimov, Sherzod T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [49] Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH2: Optimization of Metal-Organic Framework Carriers and Evaluation of Host-Guest Interactions
    Butova, Vera V.
    Burachevskaya, Olga A.
    Muratidi, Maria A.
    Surzhikova, Iana I.
    Zolotukhin, Peter, V
    Medvedev, Pavel, V
    Gorban, Ivan E.
    Kuzharov, Andrey A.
    Soldatov, Mikhail A.
    INORGANIC CHEMISTRY, 2021, 60 (08) : 5694 - 5703
  • [50] Enhanced Photocatalytic Performance of UiO-66-NH2 MOFs by Ar Plasma Modification for Reduction of Cr (VI)
    Yang, Douhao
    Jian, Ruiting
    Yan, Jianjun
    Zhang, Ao
    Liu, Bowen
    Liu, Zhongwei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (12) : 5227 - 5236