A Comprehensive Analysis for Advancements and Challenges in Deep Learning Models for Image Processing

被引:0
|
作者
Ch, Ravikumar [1 ]
Chary, Kalvog Prakasha [2 ]
Srinivas, S. [3 ]
Bhavani, Tedla [4 ]
Veeranna [5 ]
机构
[1] Chaitanya Bharathi Inst Technol, Dept Artificial Intelligence & Data Sci, Hyderabad, Telangana, India
[2] CVR Coll Engn, Dept CSE Cyber Secur, Hyderabad, Telangana, India
[3] CVR Coll Engn, Dept Comp Sci & Engn, Hyderabad, Telangana, India
[4] Vardhaman Coll Engn, Dept Comp Sci & Engn, Hyderabad, Telangana, India
[5] Sri Indu Coll Engn & Technol, Dept Informat Technol, Hyderabad, Telangana, India
来源
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023 | 2025年 / 1273卷
关键词
Deep learning; Image processing; Backpropagation algorithm; Convolutional Neural Networks (CNNs); Model structures;
D O I
10.1007/978-981-97-8031-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning, a profound advancement in artificial intelligence, has demonstrated remarkable achievements, particularly in image processing. The rapid evolution of deep learning in architecture, training methods, and specifications has driven the expansion of image processing techniques. However, the increasing complexity of model structures challenges the effectiveness of the back propagation algorithm, and issues like the accumulation of unlabeled training data and class imbalances hinder deep learning performance. To address these challenges, there's a growing need for innovative deep models and cutting-edge computing paradigms to enable more sophisticated image content analysis. In this study, we conduct a comprehensive examination of four deep learning models utilizing Convolutional Neural Networks (CNNs), clarifying their theoretical foundations within the image processing context, opening the door for further research. CNNs are notably essential for image processing due to their ability to handle complex images effectively.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [21] An Analysis on Deep Learning with its Advancements
    Senthilarasi, S.
    Kamalakkannan, S.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 56 - 62
  • [22] A Survey of Deep Learning Models for Medical Image Analysis
    Umer, Mohammad
    Sharma, Shilpa
    Rattan, Punam
    2021 INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES (ICCS 2021), 2021, : 65 - 69
  • [23] Explainable Deep Learning Models in Medical Image Analysis
    Singh, Amitojdeep
    Sengupta, Sourya
    Lakshminarayanan, Vasudevan
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [24] Developments in Image Processing Using Deep Learning and Reinforcement Learning
    Valente, Jorge
    Antonio, Joao
    Mora, Carlos
    Jardim, Sandra
    JOURNAL OF IMAGING, 2023, 9 (10)
  • [25] A comprehensive survey on deep active learning in medical image analysis
    Wang, Haoran
    Jin, Qiuye
    Li, Shiman
    Liu, Siyu
    Wang, Manning
    Song, Zhijian
    MEDICAL IMAGE ANALYSIS, 2024, 95
  • [26] Advances in Deep Learning for Medical Image Analysis: A Comprehensive Investigation
    Kumar, Rajeev Ranjan
    Shankar, S. Vishnu
    Jaiswal, Ronit
    Ray, Mrinmoy
    Budhlakoti, Neeraj
    Singh, K. N.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2025, 19 (01)
  • [27] A Review of Application of Deep Learning in Endoscopic Image Processing
    Nie, Zihan
    Xu, Muhao
    Wang, Zhiyong
    Lu, Xiaoqi
    Song, Weiye
    JOURNAL OF IMAGING, 2024, 10 (11)
  • [28] A Survey on the New Generation of Deep Learning in image Processing
    Mao, Licheng
    Zhao, Jin
    IEEE ACCESS, 2019, 7 : 172231 - 172263
  • [29] Differentiable Programming for Image Processing and Deep Learning in Halide
    Li, Tzu-Mao
    Gharbi, Michael
    Adams, Andrew
    Durand, Fredo
    Ragan-Kelley, Jonathan
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04):
  • [30] Research on OCT Image Processing Based on Deep Learning
    Hao, Senyue
    Hao, Gang
    PROCEEDINGS OF 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2020), 2020, : 208 - 212