Further results on the mixed metric dimension of graphs

被引:0
作者
Hua, Hongbo [1 ]
Chen, Yaojun [2 ]
Hua, Xinying [3 ]
机构
[1] Huaiyin Inst Technol, Fac Math & Phys, Huaian 223003, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 20093, Jiangsu, Peoples R China
[3] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词
Mixed metric dimension; Geodesic transversal number; Cut vertices; Bound; Conjecture;
D O I
10.1016/j.dam.2025.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G). The mixed metric dimension of a connected graph G, denoted by dimm(G), is the minimum cardinality of a subset S C V(G) such that for any two u, v E V(G)UE(G), there exists w E S so that the distance between wand u is not equal to the distance between wand v. In this paper, we present further results on the mixed metric dimension. First, we give a sharp upper bound on the mixed metric dimension for a graph in terms of the number of cut vertices of this graph. Second, we compare the mixed metric dimension with geodesic transversal number for trees, unicyclic graphs and block graphs. Finally, we provide some new results about a conjecture, due to Sedlar and & Scaron;krekovski (Sedlar and & Scaron;krekovski, 2021), on the mixed metric dimension. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 17 条
[1]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[2]   A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs [J].
Eroh, Linda ;
Kang, Cong X. ;
Yi, Eunjeong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) :731-747
[3]  
Harary F., 1976, Ars Combin., V2, P191
[4]   Total domination in inflated graphs [J].
Henning, Michael A. ;
Kazemi, Adel P. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) :164-169
[5]   Uniquely identifying the edges of a graph: The edge metric dimension [J].
Kelenc, Aleksander ;
Tratnik, Niko ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2018, 251 :204-220
[6]   Mixed metric dimension of graphs [J].
Kelenc, Aleksander ;
Kuziak, Dorota ;
Taranenko, Andrei ;
Yero, Ismael G. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :429-438
[7]   Graphs with the edge metric dimension smaller than the metric dimension [J].
Knor, Martin ;
Majstorovic, Snjezana ;
Toshi, Aoden Teo Masa ;
Skrekovski, Riste ;
Yero, Ismael G. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
[8]  
Liu Y., 2014, Appl. Math. Sci., V8, P6373
[9]   The geodesic transversal problem on some networks [J].
Manuel, Paul ;
Bresar, Bostjan ;
Klavzar, Sandi .
COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
[10]   The geodesic-transversal problem [J].
Manuel, Paul ;
Bresar, Bostjan ;
Klavzar, Sandi .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 413