Finite Difference and Chebyshev Collocation for Time-Fractional and Riesz Space Distributed-Order Advection-Diffusion Equation with Time-Delay

被引:0
作者
Wang, Fang [1 ]
Chen, Yuxue [1 ]
Liu, Yuting [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410001, Peoples R China
基金
中国国家自然科学基金;
关键词
second finite difference; spectral collocation; second kind Chebyshev polynomials; advection-diffusion equation; Riesz space distributed-order; WAVE EQUATION; SCHEME; STABILITY; SYSTEMS;
D O I
10.3390/fractalfract8120700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have established a numerical method for a class of time-fractional and Riesz space distributed-order advection-diffusion equation with time-delay. Firstly, we transform the Riesz space distributed-order derivative term of the diffusion equation into multi-term fractional derivatives by using the Gauss quadrature formula. Secondly, we discretize time by using second-order finite differences, discretize space by using second kind Chebyshev polynomials, and convert the multi-term fractional equation to a system of algebraic equations. Finally, we solve the algebraic equations by the iterative method, and prove the stability and convergence. Moreover, relevant examples are shown to verify the validity of our algorithm.
引用
收藏
页数:20
相关论文
共 44 条
[1]   Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation [J].
Agarwal, P. ;
El-Sayed, A. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 500 :40-49
[2]   Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method [J].
Ali Shah, Farman ;
Boulila, Wadii ;
Koubaa, Anis ;
Mlaiki, Nabil .
FRACTAL AND FRACTIONAL, 2023, 7 (10)
[3]   Existence and calculation of the solution to the time distributed order diffusion equation [J].
Atanackovic, T. M. ;
Pilipovic, S. ;
Zorica, D. .
PHYSICA SCRIPTA, 2009, T136
[4]  
Bagley R., 2000, Int. J. Appl. Math, V2, P865
[5]  
Caputo M, 2003, ANN GEOPHYS-ITALY, V46, P223
[6]  
Caputo M., 2001, Fract Calc Appl Anal, V4, P421
[7]   Stability regions for fractional differential systems with a time delay [J].
Cermak, Jan ;
Hornicek, Jan ;
Kisela, Tamas .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 31 (1-3) :108-123
[8]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[9]   A fourth-order accurate numerical method for the distributed-order Riesz space fractional diffusion equation [J].
Chen, Xuejuan ;
Chen, Jinghua ;
Liu, Fawang ;
Sun, Zhi-zhong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) :1266-1286
[10]   Existence, uniqueness, and approximate solutions for the general nonlinear distributed-order fractional differential equations in a Banach space [J].
Eftekhari, Tahereh ;
Rashidinia, Jalil ;
Maleknejad, Khosrow .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)