Development of ZnO Buffer Layers for As-Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%

被引:0
作者
Kujovic, Luksa [1 ]
Liu, Xiaolei [1 ]
Togay, Mustafa [1 ]
Abbas, Ali [1 ]
Law, Adam M. [1 ]
Jones, Luke O. [1 ]
Curson, Kieran M. [1 ]
Barth, Kurt L. [1 ]
Bowers, Jake W. [1 ]
Walls, John M. [1 ]
Oklobia, Ochai [2 ]
Lamb, Dan A. [2 ]
Irvine, Stuart J. C. [2 ]
Zhang, Wei [3 ]
Lee, Chungho [3 ]
Nagle, Timothy [3 ]
Lu, Dingyuan [3 ]
Xiong, Gang [3 ]
机构
[1] Loughborough Univ, Ctr Renewable Energy Syst Technol CREST, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, England
[2] Swansea Univ, Fac Sci & Engn, Ctr Solar Energy Res CSER, Ctr Integrat Semicond Mat CISM, Bay Campus, Swansea SA1 8EN, Wales
[3] Calif Technol Ctr CTC, First Solar Inc, 1035 Walsh Ave, Santa Clara, CA 95050 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年
基金
英国工程与自然科学研究理事会;
关键词
buffer layer; CdSeTe/CdTe; solar cells; ZnO; CADMIUM TELLURIDE; PASSIVATION; CARBON;
D O I
10.1002/admt.202401364
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for CdSeTe/CdTe solar cells is reported. The ZnO films are radio frequency sputter-deposited on SnO2:F coated soda-lime glass substrates. The substrate temperature for the ZnO deposition is varied from 22 to 500 degrees C. An efficiency of 20.74% is achieved using ZnO deposited at 100 degrees C. The ZnO thickness is varied between 40 nm and 75 nm. Following the ZnO depositions, devices were fabricated using First Solar's CdSeTe/CdTe absorber, CdCl2 treatment, and back contact. The optimal ZnO deposition temperature and thickness is 100 degrees C and 65 nm, respectively. The STEM-EDX analysis shows that within the detection limits, chlorine is not detected at the front interface of the devices using ZnO deposited at 22 degrees C and 100 degrees C. However, depositing ZnO at 500 degrees C results in chlorine segregation appearing at the ZnO/CdSeTe boundary. This suggests that chlorine is not needed to passivate the ZnO/CdSeTe interface during the lower temperature depositions. The nanocrystalline ZnO deposited at lower temperatures results in a high-quality interface.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer
    Pasquale Morvillo
    Rosita Diana
    Rosa Ricciardi
    Eugenia Bobeico
    Carla Minarini
    [J]. Journal of Sol-Gel Science and Technology, 2015, 73 : 550 - 556
  • [32] High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer
    Morvillo, Pasquale
    Diana, Rosita
    Ricciardi, Rosa
    Bobeico, Eugenia
    Minarini, Carla
    [J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2015, 73 (03) : 550 - 556
  • [33] Controlling surface morphology of Ag-doped ZnO as a buffer layer by dispersion engineering in planar perovskite solar cells
    Bagha, Ghazaleh
    Samavati, Katayoon
    Naffakh-Moosavy, Homam
    Matin, Laleh Farhang
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [34] Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer
    Yu, W.
    Huang, L.
    Yang, D.
    Fu, P.
    Zhou, L.
    Zhang, J.
    Li, C.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) : 10660 - 10665
  • [35] Characterization of Sulfur Bonding in CdS:O Buffer Layers for CdTe-based Thin-Film Solar Cells
    Duncan, Douglas A.
    Kephart, Jason M.
    Horsley, Kimberly
    Blum, Monika
    Mezher, Michelle
    Weinhardt, Lothar
    Haeming, Marc
    Wilks, Regan G.
    Hofmann, Timo
    Yang, Wanli
    Baer, Marcus
    Sampath, Walajabad S.
    Heske, Clemens
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) : 16382 - 16386
  • [36] Efficiency and Air-Stability Improvement of Flexible Inverted Polymer Solar Cells Using ZnO/Poly(ethylene glycol) Hybrids as Cathode Buffer Layers
    Hu, Ting
    Li, Fan
    Yuan, Kai
    Chen, Yiwang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) : 5763 - 5770
  • [37] Effects of Electrodeposited Ga-doped ZnO Buffer Layer on the Performance of Inverted Organic Solar Cells
    Shim, Won Hyun
    Kim, Young Tea
    Park, Mi Yeong
    Lim, Jae-Hong
    Do Kim, Yang
    Lee, Kyu Hwan
    Jeong, Yongsoo
    Lim, Dong Chan
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2010, 5 (02) : 181 - 185
  • [38] Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers
    Lee, Inhwa
    Noh, Jonghyeon
    Lee, Jung-Yong
    Kim, Taek-Soo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 37395 - 37401
  • [39] CdS sensitized pristine and Cd doped ZnO solar cells: Effect of SILAR cycles on optical properties and efficiency
    Kokate, Sunita K.
    Supekar, Abhijit T.
    Baviskar, Prashant K.
    Palve, Balasaheb M.
    Jadkar, Sandesh R.
    Mohite, Kakasaheb C.
    Pathan, Habib M.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 80 : 179 - 183
  • [40] Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells
    Hu, Ting
    Chen, Lie
    Yuan, Kai
    Chen, Yiwang
    [J]. NANOSCALE, 2015, 7 (20) : 9194 - 9203