Recent innovations in explosive trace detection: Advances and emerging technologies

被引:0
作者
Mohammed, Al-Fakih Ali [1 ]
Nabat, Karim Youssef [2 ]
Jiang, Ting [1 ]
Liu, Lingyan [3 ]
机构
[1] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Chem & Chem Engn, Key Lab Clusters Sci, Minist Educ, Beijing 100081, Peoples R China
[3] Capital Med Univ, Sch Pharmaceut Sci, Beijing 100069, Peoples R China
基金
中国国家自然科学基金;
关键词
Explosive trace detection; IMS; GC-MS; AIMS; Surface-enhanced Raman; ION-MOBILITY SPECTROMETRY; PRESSURE CHEMICAL-IONIZATION; HEXAMETHYLENE TRIPEROXIDE DIAMINE; ENHANCED RAMAN-SCATTERING; AMBIENT MASS-SPECTROMETRY; CORONA DISCHARGE IONIZATION; FLEXIBLE SERS SUBSTRATE; ATMOSPHERIC-PRESSURE; ELECTROSPRAY-IONIZATION; THERMAL-DESORPTION;
D O I
10.1016/j.teac.2025.e00261
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detecting trace explosives is crucial for public safety in forensics, security, and environmental monitoring. This review analyzes recent advancements in four key explosive detection technologies: Ion Mobility Spectrometry (IMS), Gas Chromatography-mass spectrometry (GC-MS), Ambient Ionization Mass Spectrometry (AIMS), and Surface-Enhanced Raman Spectroscopy (SERS). IMS excels in detecting low-volatile explosives in complex environments, while GC-MS offers enhanced sensitivity and resolution for trace analysis. AIMS is noted for its rapid, non-invasive, high-throughput capabilities, ideal for real-time detection. Recent improvements in SERS have increased its sensitivity across a broader range of explosive compounds. Despite these advances, challenges such as low recovery rates, cross-sensitivity, and environmental interference remain. The paper highlights the need for continued innovation to improve sensitivity, selectivity, and accuracy, addressing evolving security, forensic, and environmental threats.
引用
收藏
页数:23
相关论文
共 277 条
[1]   Experimental study on standoff detection of explosives traces using Laser Raman spectroscopy: challenges and possible solution [J].
Abdallah, Adel ;
Mokhtar, Ayman ;
Ayoub, H. S. ;
Elbashar, Y. H. .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (06)
[2]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[3]   Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures [J].
Adhikari, Samir ;
Noh, Daegwon ;
Kim, Minjun ;
Ahn, Daehyun ;
Jang, Yudong ;
Oh, Eunsoon ;
Lee, Donghan .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 311
[4]   Vapor Pressure of Hexamethylene Triperoxide Diamine (HMTD) Estimated Using Secondary Electrospray Ionization Mass Spectrometry [J].
Aernecke, Matthew J. ;
Mendum, Ted ;
Geurtsen, Geoff ;
Ostrinskaya, Alla ;
Kunz, Roderick R. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (47) :11514-11522
[5]   A laser-based FAIMS detector for detection of ultralow concentrations of explosives [J].
Akmalov, Artem E. ;
Chistyakov, Alexander A. ;
Kotkovskii, Gennadii E. ;
Sychev, Alexey V. ;
Tugaenko, Anton V. ;
Bogdanov, Artem S. ;
Perederiy, Anatoly N. ;
Spitsyn, Evgeny M. .
LASER TECHNOLOGY FOR DEFENSE AND SECURITY X, 2014, 9081
[6]   Resonance Raman Spectra of TNT and RDX Using Vibronic Theory, Excited-State Gradient, and Complex Polarizability Approximations [J].
Al-Saidi, W. A. ;
Asher, Sanford A. ;
Norman, Patrick .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (30) :7862-7872
[7]   Applications of laser-ablation-inductively-coupled plasma-mass spectrometry in chemical analysis of forensic evidence [J].
Alamilla Orellana, Francisco ;
Gonzalez Galvez, Cesar ;
Torre Roldan, Mercedes ;
Garcia-Ruiz, Carmen .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2013, 42 :1-34
[8]   Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis [J].
Albert, Anastasia ;
Shelley, Jacob T. ;
Engelhard, Carsten .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (25) :6111-6127
[9]   Analyzing Positive Reactant Ions in High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) by HiKE-IMS-MS [J].
Allers, Maria ;
Kirk, Ansgar T. ;
von Rossbitzky, Nikolaj ;
Erdogdu, Duygu ;
Hillen, Robin ;
Wissdorf, Walter ;
Benter, Thorsten ;
Zimmermann, Stefan .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2020, 31 (04) :812-821
[10]   Fabrication of Au coated sinusoidal grating substrates as SPP-SERS sensor chip for trace-level detection of explosive [J].
Aminah, Nina Siti ;
Lertvanithphol, Tossaporn ;
Sathukarn, Asmar ;
Horprathum, Mati ;
Alatas, Husin ;
Fauzia, Vivi ;
Santosa, Sigit Puji ;
Isnaeni ;
Herman ;
Alni, A. ;
Djamal, Mitra .
OPTICAL MATERIALS, 2024, 149