On a blow-up criterion for the Navier-Stokes-Fourier system under general equations of state

被引:0
作者
Abbatiello, Anna [1 ]
Basaric, Danica [2 ]
Chaudhuri, Nilasis [3 ]
机构
[1] Univ Campania L Vanvitelli, Dept Math & Phys, Via A Lincoln 5, I-81100 Caserta, Italy
[2] Politecn Milan, Dept Math, Via E Bonardi 9, I-20133 Milan, Italy
[3] Univ Warsaw, Fac Math Informat & Mech, Stefana Banacha 2, PL-02097 Warsaw, Poland
关键词
Navier-Stokes-Fourier system; Blow-up criterion; Inhomogeneous Dirichlet boundary conditions; General equations of state; REGULARITY; EXISTENCE;
D O I
10.1016/j.nonrwa.2025.104328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a blow-up criterion for the compressible Navier-Stokes-Fourier system for general thermal and caloric equations of state with inhomogeneous boundary conditions for the velocity and the temperature. Assuming only that Gibb's equation and the thermodynamic stability hold, we show that solutions in a certain regularity class remain regular under the condition that the density, the temperature and the modulus of the velocity are bounded.
引用
收藏
页数:11
相关论文
共 16 条
[1]   Conditional regularity for the Navier-Stokes-Fourier system with Dirichlet boundary conditions [J].
Basaric, Danica ;
Feireisl, Eduard ;
Mizerova, Hana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 365 :359-378
[2]   Navier-Stokes-Fourier system with Dirichlet boundary conditions [J].
Chaudhuri, Nilasis ;
Feireisl, Eduard .
APPLICABLE ANALYSIS, 2022, 101 (12) :4076-4094
[3]   Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data [J].
Denk, Robert ;
Hieber, Matthias ;
Pruess, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :193-224
[4]   A blow-up criterion for compressible viscous heat-conductive flows [J].
Fan, Jishan ;
Jiang, Song ;
Ou, Yaobin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :337-350
[5]   A blow-up criterion for two dimensional compressible viscous heat-conductive flows [J].
Fang, Daoyuan ;
Zi, Ruizhao ;
Zhang, Ting .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) :3130-3141
[6]  
Feireisl E., 2022, Necas Center Series
[7]   On Nash's conjecture for models of viscous, compressible, and heat conducting fluids [J].
Feireisl, Eduard ;
Wen, Huanyao ;
Zhu, Changjiang .
MATHEMATISCHE ANNALEN, 2024, 390 (01) :1201-1248
[8]   A Regularity Criterion for the Weak Solutions to the Navier-Stokes-Fourier System [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Sun, Yongzhong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (01) :219-239
[9]   Serrin-Type Blowup Criterion for Full Compressible Navier-Stokes System [J].
Huang, Xiangdi ;
Li, Jing ;
Wang, Yong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (01) :303-316
[10]  
MATSUMURA A, 1980, J MATH KYOTO U, V20, P67