Finite-key interfering-or-not-interfering quantum key distribution without intensity modulation

被引:0
作者
Li, Yue
Shi, Kaiyi
Wang, Haoyang
Liu, Chang
Zhang, Yujia
Ma, Duo
Ma, Haiqiang [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYPTOGRAPHY; SECURITY;
D O I
10.1103/PhysRevA.111.032608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
incorporating a scheme without intensity modulation (IM), which circumvents the impulse correlation issue associated with IM. Based on the minimum smooth entropy, we derive the key rate for finite code lengths and estimate the phase bit error rate using a no-decoy state method. Simulation results show that the protocol achieves the maximum communication distance of 337 km with quantum bit error rate of approximately 0.36%. Moreover, the feasibility of using fewer phase plates (M = 6, 8) to realize discrete random phases in INI-QKD is also verified. Notably, the INI-QKD without IM exhibits significant advantages under polarization misalignment and phase mismatch conditions, reflecting greater adaptability to complex environments. By simplifying experimental setups and reducing the technical challenges, the INI-QKD without IM provides an alternative realization idea in the field of quantum communication.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[2]   Finite-key analysis for practical implementations of quantum key distribution [J].
Cai, Raymond Y. Q. ;
Scarani, Valerio .
NEW JOURNAL OF PHYSICS, 2009, 11
[3]   Discrete-phase-randomized coherent state source and its application in quantum key distribution [J].
Cao, Zhu ;
Zhang, Zhen ;
Lo, Hoi-Kwong ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2015, 17
[4]   Decoy-state quantum key distribution with more than three types of photon intensity pulses [J].
Chau, H. F. .
PHYSICAL REVIEW A, 2018, 97 (04)
[5]   High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges [J].
Cozzolino, Daniele ;
Da Lio, Beatrice ;
Bacco, Davide ;
Oxenlowe, Leif Katsuo .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (12)
[6]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[7]   Tight finite-key security for twin-field quantum key distribution [J].
Curras-Lorenzo, Guillermo ;
Navarrete, Alvaro ;
Azuma, Koji ;
Kato, Go ;
Curty, Marcos ;
Razavi, Mohsen .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[8]   Simple security proof of twin-field type quantum key distribution protocol [J].
Curty, Marcos ;
Azuma, Koji ;
Lo, Hoi-Kwong .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[9]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5
[10]   High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J].
Ding, Yunhong ;
Bacco, Davide ;
Dalgaard, Kjeld ;
Cai, Xinlun ;
Zhou, Xiaoqi ;
Rottwitt, Karsten ;
Oxenlowe, Leif Katsuo .
NPJ QUANTUM INFORMATION, 2017, 3