Breather and rogue wave solutions for the variable coefficient nonlinear Schrödinger equation on Jacobian elliptic function periodic backgrounds

被引:0
作者
Wei, Meng-Chu [1 ]
Wen, Xiao-Yong [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Variable coefficient nonlinear Schr & ouml; dinger equation; Breather solutions; Rogue wave solutions; Jacobian elliptic function; SCHRODINGER-EQUATION; SOLITON-SOLUTIONS;
D O I
10.1016/j.aml.2025.109524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study concentrates on exact solutions on the Jacobian elliptic function periodic background to the variable-coefficient nonlinear Schr & ouml;dinger (vcNLS) equation. Through constructing the new eigenvalue solution for Lax pair and using the known Darboux transformation (DT) of vcNLS equation, the breather and rogue wave (RW) structures on Jacobian elliptic function backgrounds are revealed. By changing the variable coefficients in the equation, some novel localized wave structures are discussed graphically. The results presented in this letter will provide a valuable theoretical support for solving localized waves on the complicated seed background of variable coefficient nonlinear equations.
引用
收藏
页数:6
相关论文
共 18 条
[1]   DYNAMICS OF A GENERALIZED CLASSICAL HEISENBERG CHAIN [J].
BALAKRISHNAN, R .
PHYSICS LETTERS A, 1982, 92 (05) :243-246
[2]   Periodic travelling waves and rogue waves for the higher-order modified Korteweg-de Vries equation [J].
Chen, Fa ;
Zhang, Hai-Qiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 97
[3]   Rogue periodic waves of the focusing nonlinear Schrodinger equation [J].
Chen, Jinbing ;
Pelinovsky, Dmitry E. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210)
[4]   Rogue Wave Solutions for Nonlinear Schrodinger Equation with Variable Coefficients in Nonlinear Optical Systems [J].
Chen Qi ;
Zhang Wei-Guo ;
Zhang Hai-Qiang ;
Yang Bo .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (03) :373-382
[5]   W-shaped soliton, breather and rogue wave solutions on the elliptic function background in a fifth-order nonlinear Schrödinger equation [J].
Fan, Fang-Cheng ;
Xie, Wei-Kang .
WAVE MOTION, 2024, 129
[6]   New optical soliton solutions for the variable coefficients nonlinear Schrodinger equation [J].
Gu, Yongyi ;
Aminakbari, Najva .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (04)
[7]   A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients [J].
Hao, RY ;
Li, L ;
Li, ZH ;
Xue, WR ;
Zhou, GS .
OPTICS COMMUNICATIONS, 2004, 236 (1-3) :79-86
[8]   The fourth-order dispersion effect on the soliton waves and soliton stabilities for the cubic-quintic Gross-Pitaevskii equation [J].
Li, Li ;
Yu, Fajun .
CHAOS SOLITONS & FRACTALS, 2024, 179
[9]   Interaction and manipulation for non-autonomous bright soliton solution of the coupled derivative nonlinear Schrödinger equations with Riemann-Hilbert method [J].
Li, Li ;
Yu, Fajun ;
Qin, Qing .
APPLIED MATHEMATICS LETTERS, 2024, 149
[10]   Breather and rogue-wave solutions of the semi-discrete and continuous nonlinear Schrödinger equations on theta-function backgrounds [J].
Li, Ruomeng ;
Geng, Jingru ;
Geng, Xianguo .
NONLINEARITY, 2025, 38 (01)