Computationally aided design of single-ion-conducting block copolymer electrolytes to boost lithium-ion conductivity

被引:0
作者
Song, Zi-Chen [1 ]
Ma, Xiao-Juan [1 ]
Huang, Chong-Yang [1 ]
Xu, Fei-Xiang [1 ]
Fang, Shang-Quan [1 ]
Peng, Ze-Xin [1 ]
Zhang, Rui [1 ]
机构
[1] South China Univ Technol, South China Adv Inst Soft Matter Sci & Technol, Sch Emergent Soft Matter, Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
single ion conductor; block copolymer electrolyte; ionic conductivity; molecular dynamics simulation; Gaussian process regression; UNITED-ATOM DESCRIPTION; TRANSFERABLE POTENTIALS; PHASE-EQUILIBRIA; POLYMER ELECTROLYTES; DYNAMICS; CHAIN; MORPHOLOGY; MOLECULES; TRANSPORT; MODELS;
D O I
10.1002/pi.6735
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, we implement a combinatory approach that integrates molecular dynamics (MD) simulation and a Gaussian process regression (GPR) algorithm to explore optimal design strategies for a generic single-ion-conducting block copolymer electrolyte (SIC-BCPE) model system that covers a rich design parameter space inspired by recently established poly(ethylene oxide)-based block copolymer electrolytes. The GPR algorithm is employed to efficiently reveal the relationships between the desired lithium-ion conductivity and four design parameters reflecting both chain architectural control and specific tuning of molecular chemistry. Guided by the GPR results, an optimal combination of four parameter values is inferred, and MD simulation confirms that the corresponding SIC-BCPE system produces relatively higher lithium-ion conductivity. To further understand the influence of each molecular parameter on the trends of lithium-ion conductivity, we analyse the proportion variation of different types of lithium-ion coordination and identify a strong correlation between the ion coordination pattern and ionic conductivity. Due to its generality, we expect that the MD-GPR combinatory approach reported in this work is applicable to a broad range of other polymer-based ion transport systems. (c) 2024 Society of Chemical Industry.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Effects of Side Chain Length on Ionic Aggregation and Dynamics in Polymer Single-Ion Conductors [J].
Abbott, Lauren J. ;
Lawson, John W. .
MACROMOLECULES, 2019, 52 (19) :7456-7467
[2]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[3]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[4]   Optimal allocation of computational resources based on Gaussian process: Application to molecular dynamics simulations [J].
Chilleri, John ;
He, Yanyan ;
Bedrov, Dmitry ;
Kirby, Robert M. .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Modelling the Polymer Electrolyte/Li-Metal Interface by Molecular Dynamics simulations [J].
Ebadi, Mahsa ;
Costa, Luciano T. ;
Araujo, C. Moyses ;
Brandell, Daniel .
ELECTROCHIMICA ACTA, 2017, 234 :43-51
[7]   Role of Tethered Ion Placement on Polymerized Ionic Liquid Structure and Conductivity: Pendant versus Backbone Charge Placement [J].
Evans, Christopher M. ;
Bridges, Colin R. ;
Sanoja, Gabriel E. ;
Bartels, Joshua ;
Segalman, Rachel A. .
ACS MACRO LETTERS, 2016, 5 (08) :925-930
[8]   Chain and Ion Dynamics in Precise Polyethylene Ionomers [J].
Frischknecht, Amalie L. ;
Paren, Benjamin A. ;
Middleton, L. Robert ;
Koski, Jason P. ;
Tarver, Jacob D. ;
Tyagi, Madhusudan ;
Soles, Christopher L. ;
Winey, Karen I. .
MACROMOLECULES, 2019, 52 (20) :7939-7950
[9]   Inorganic and organic hybrid solid electrolytes for lithium-ion batteries [J].
Fu, Xiaotao ;
Yu, Danni ;
Zhou, Junwen ;
Li, Siwu ;
Gao, Xing ;
Han, Yuzhen ;
Qi, Pengfei ;
Feng, Xiao ;
Wang, Bo .
CRYSTENGCOMM, 2016, 18 (23) :4236-4258
[10]   Modeling and Simulations of Polymers: A Roadmap [J].
Gartner, Thomas E., III ;
Jayaraman, Arthi .
MACROMOLECULES, 2019, 52 (03) :755-786