Unconditional superconvergence analysis of low-order conforming mixed finite element method for time-dependent incompressible MHD equations

被引:0
作者
Chu, Xiaochen [1 ]
Shi, Xiangyu [2 ]
Shi, Dongyang [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Business Sch, Zhengzhou 450001, Peoples R China
[3] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 143卷
基金
中国国家自然科学基金;
关键词
Time-dependent incompressible MHD; equations; Low-order conforming MFEM; New high accuracy estimation; Superclose and superconvergence results; NAVIER-STOKES; PROJECTION METHODS; ERROR ANALYSIS; SCHEME; STATIONARY;
D O I
10.1016/j.cnsns.2025.108627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a backward Euler semi-implicit full discrete scheme for the dependent incompressible MHD equations and study the superconvergence behavior scheme. The spatial discretization is based on the bilinear-constant-bilinear elements velocity, pressure and magnetic fields, respectively, while the time discretization is based the first-order backward Euler scheme. Firstly, we prove a new high accuracy estimation related to the magnetic field, and prove the unconditional boundedness of numerical solutions in L infinity-norm by introducing a time-discrete auxiliary system. Then we derive the superclose estimates rigorously, which lead to the corresponding superconvergence results with assistance from interpolation post-processing techniques. In the end, we provide some numerical examples to verify the correctness of our theoretical analysis.
引用
收藏
页数:20
相关论文
共 28 条
[1]   Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics [J].
Dong, Xiaojing ;
He, Yinnian .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (02) :426-451
[2]   Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics [J].
Dong, Xiaojing ;
He, Yinnian ;
Zhang, Yan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 276 :287-311
[3]  
Girault P.-A. Raviart., 1986, Finite Element Methods for Navier-Stokes Equations
[4]   A rotational velocity-correction projection method for unsteady incompressible magnetohydrodynamics equations [J].
Guan, Jixiang ;
Jing, Shujie ;
Si, Zhiyong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) :809-821
[5]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045
[6]   On the Global Unique Solvability of Initial-Boundary Value Problems for the Coupled Modified Navier-Stokes and Maxwell Equations [J].
Gunzburger, M. D. ;
Ladyzhenskaya, O. A. ;
Peterson, J. S. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (04) :462-482
[7]  
GUNZBURGER MD, 1991, MATH COMPUT, V56, P523, DOI 10.1090/S0025-5718-1991-1066834-0
[8]   Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations [J].
He, Yinnian .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) :767-801
[9]  
Li BY, 2013, INT J NUMER ANAL MOD, V10, P622
[10]   Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrodinger equation [J].
Li, Meng ;
Shi, Dongyang ;
Wang, Junjun ;
Ming, Wanyuan .
APPLIED NUMERICAL MATHEMATICS, 2019, 142 :47-63