Assessing the Clinical and Functional Status of COPD Patients Using Speech Analysis During and After Exacerbation

被引:1
作者
Mayr, Wolfgang [1 ]
Triantafyllopoulos, Andreas [2 ,3 ]
Batliner, Anton [2 ,3 ]
Schuller, Bjoern W. [2 ,3 ,4 ,5 ]
Berghaus, Thomas M. [1 ,6 ]
机构
[1] Univ Hosp Augsburg, Dept Cardiol Resp Med & Intens Care, Stenglinstr 2, D-86156 Augsburg, Germany
[2] Tech Univ Munich, Chair Hlth Informat, Dept Clin Med, Klinikum Rechts Isar, Ismaninger Str 22, D-81675 Munich, Germany
[3] Munich Ctr Machine Learning, Munich, Germany
[4] Imperial Coll, Grp Language Audio & Mus, London, England
[5] Munich Data Sci Inst, Munich, Germany
[6] Ludwig Maximilians Univ Munchen, Med Fac, Munich, Germany
关键词
COPD; pathological speech; feature interpretation; personalization; digital health;
D O I
10.2147/COPD.S480842
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD. Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation. We extracted a set of spectral, prosodic, and temporal variability features, which were used as input to a support vector machine (SVM). Our baseline for predicting patient state was an SVM model using self- reported BORG and COPD Assessment Test (CAT) scores. Results: In 50 COPD patients (52% males, 22% GOLD II, 44% GOLD III, 32% GOLD IV, all patients group E), speech analysis was superior in distinguishing during and after exacerbation status compared to BORG and CAT scores alone by achieving 84% accuracy in prediction. CAT scores correlated with reading rhythm, and BORG scales with stability in articulation. Pulmonary function testing (PFT) correlated with speech pause rate and speech rhythm variability. Conclusion: Speech analysis may be a viable technology for classifying COPD status, opening up new opportunities for remote disease monitoring.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 28 条
[1]   Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary [J].
Agusti, Alvar ;
Celli, Bartolome R. ;
Criner, Gerard J. ;
Halpin, David ;
Anzueto, Antonio ;
Barnes, Peter ;
Bourbeau, Jean ;
Han, MeiLan K. ;
Martinez, Fernando J. ;
de Oca, Maria Montes ;
Mortimer, Kevin ;
Papi, Alberto ;
Pavord, Ian ;
Roche, Nicolas ;
Salvi, Sundeep ;
Sin, Don D. ;
Singh, Dave ;
Stockley, Robert ;
Varela, M. Victorina Lopez ;
Wedzicha, Jadwiga A. ;
Vogelmeier, Claus F. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207 (07) :819-837
[2]   The voice of COVID-19: Acoustic correlates of infection in sustained vowelsa) [J].
Bartl-Pokorny, Katrin D. ;
Pokorny, Florian B. ;
Batliner, Anton ;
Amiriparian, Shahin ;
Semertzidou, Anastasia ;
Eyben, Florian ;
Kramer, Elena ;
Schmidt, Florian ;
Schonweiler, Rainer ;
Wehler, Markus ;
Schuller, Bjorn W. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (06) :4377-4383
[3]   PSYCHOPHYSICAL BASES OF PERCEIVED EXERTION [J].
BORG, GAV .
MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 1982, 14 (05) :377-381
[4]   Continuous Cough Monitoring Using Ambient Sound Recording During Convalescence from a COPD Exacerbation [J].
Crooks, Michael G. ;
den Brinker, Albertus ;
Hayman, Yvette ;
Williamson, James D. ;
Innes, Andrew ;
Wright, Caroline E. ;
Hill, Peter ;
Morice, Alyn H. .
LUNG, 2017, 195 (03) :289-294
[5]  
Cucchiarini C., 2020, PROC RAPID WORKSHOP, P78
[6]  
De Cheveigne A., 1999, PROC ICPHS14, P2093
[7]  
Eyben F, 2016, SPRINGER THESES-RECO, P1, DOI 10.1007/978-3-319-27299-3
[8]  
Eyben F., 2010, Proceedings of the 18th ACM International Conference on Multimedia, P1459
[9]   The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing [J].
Eyben, Florian ;
Scherer, Klaus R. ;
Schuller, Bjoern W. ;
Sundberg, Johan ;
Andre, Elisabeth ;
Busso, Carlos ;
Devillers, Laurence Y. ;
Epps, Julien ;
Laukka, Petri ;
Narayanan, Shrikanth S. ;
Truong, Khiet P. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2016, 7 (02) :190-202
[10]   Proposing a standardized method for evaluating patient report of the intensity of dyspnea during exercise testing in COPD [J].
Hareendran, Asha ;
Leidy, Nancy K. ;
Monz, Brigitta U. ;
Winnette, Randall ;
Becker, Karin ;
Mahler, Donald A. .
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2012, 7 :345-355