Systemic inflammation is an important risk factor and predictor of graft loss and mortality one year after kidney transplantation

被引:1
作者
Heldal, Torbjorn F. [1 ,2 ,3 ]
Asberg, Anders [3 ,4 ,5 ]
Ueland, Thor [2 ,6 ,7 ]
Reisaeter, Anna V. [3 ,4 ]
Pischke, Soren E. [8 ,9 ,10 ]
Mollnes, Tom E. [8 ,9 ,11 ]
Aukrust, Pal [2 ,6 ,7 ,12 ]
Reinholt, Finn P. [13 ]
Hartmann, Anders [2 ,3 ]
Heldal, Kristian [1 ,3 ,14 ]
Jenssen, Trond G. [2 ,3 ]
机构
[1] Telemark Hosp Trust, Dept Internal Med, Skien, Norway
[2] Univ Oslo, Inst Clin Med, Oslo, Norway
[3] Oslo Univ Hosp Rikshosp, Dept Transplantat Med, Oslo, Norway
[4] Oslo Univ Hosp Rikshosp, Norwegian Renal Registry, Oslo, Norway
[5] Univ Oslo, Dept Pharm, Oslo, Norway
[6] Univ Hosp North Norway, Thrombosis Res Ctr TREC, Div Internal Med, Tromso, Norway
[7] Oslo Univ Hosp Rikshosp, Res Inst Internal Med, Oslo, Norway
[8] Oslo Univ Hosp, Dept Immunol, Oslo, Norway
[9] Oslo Univ Hosp, Oslo, Norway
[10] Oslo Univ Hosp, Dept Anesthesiol, Div Emergencies & Crit Care, Oslo, Norway
[11] Nordland Hosp Bodo, Res Lab, Bodo, Norway
[12] Oslo Univ Hosp Rikshosp, Sect Clin Immunol & Infect Dis, Oslo, Norway
[13] Oslo Univ Hosp, Dept Pathol, Rikshosp, Oslo, Norway
[14] Univ Oslo, Inst Hlth & Soc, Oslo, Norway
关键词
kidney transplantation; graft loss; mortality; inflammation; biomarkers; prediction; RECIPIENTS; STANDARD;
D O I
10.3389/fimmu.2025.1529812
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background An inflammatory environment following kidney transplantation is associated with increased risk of graft loss and mortality, however, evaluation of systemic inflammation is not implemented in structured risk assessment in kidney transplant recipients. Long-term results after transplantation are not satisfactory, and thus tools addressing these issues are needed. In this study, we tested the associations and predictive abilities of a predefined systemic inflammation score one year after transplantation on death-censored graft loss and mortality. Methods We included 805 patients who underwent kidney transplantation between 2013 and 2017 at the Oslo University Hospital, Rikshospitalet. The inflammation score included five specifically selected biomarkers known to reflect various inflammatory pathways and to be associated with adverse outcomes following transplantation. The score was assessed in relation to outcomes in models with established risk factors. Discriminatory analyses were performed using Harrell<acute accent>s C-statistic, and model assessment were evaluated using internal validation, calibration, and likelihood ratio tests. Results The median follow-up time was 6.4 years. There were 168 deaths (20.9%) and 42 graft losses (5.2%). The inflammation score one year after transplantation was significantly associated with graft loss (P<0.001) and mortality (P<0.001). The diagnostic performance of the model for graft loss revealed a c-statistic of 0.77 both with and without histological data. The diagnostic performance for mortality displayed a c-statistic of 0.79. In all tested scenarios, the model fit significantly improved after including the inflammation score. Conclusions These results suggest a strong association between systemic inflammation one year after transplantation and both graft loss and mortality. Predictive models including the inflammation score and established risk factors were particularly informative when considering mortality. Evaluation of systemic inflammation using this score could be an important tool for risk-assessment after transplantation.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Inflammation in Renal Transplantation [J].
Abedini, Sadollah ;
Holme, Ingar ;
Maerz, Winfried ;
Weihrauch, Gisela ;
Fellstroem, Bengt ;
Jardine, Alan ;
Cole, Edward ;
Maes, Bart ;
Neumayer, Hans-Hellmut ;
Gronhagen-Riska, Carola ;
Ambuehl, Patrice ;
Holdaas, Hallvard .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2009, 4 (07) :1246-1254
[2]   Cell-free DNA for the detection of kidney allograft rejection [J].
Aubert, Olivier ;
Ursule-Dufait, Cindy ;
Brousse, Romain ;
Gueguen, Juliette ;
Racape, Maud ;
Raynaud, Marc ;
Van Loon, Elisabet ;
Pagliazzi, Angelica ;
Huang, Edmund ;
Jordan, Stanley C. ;
Chavin, Kenneth D. ;
Gupta, Gaurav ;
Kumar, Dhiren ;
Alhamad, Tarek ;
Anand, Sanjiv ;
Sanchez-Garcia, Jorge ;
Abdalla, Basmah A. ;
Hogan, Julien ;
Garro, Rouba ;
Dadhania, Darshana M. ;
Jain, Pranjal ;
Mandelbrot, Didier A. ;
Naesens, Maarten ;
Dandamudi, Raja ;
Dharnidharka, Vikas R. ;
Anglicheau, Dany ;
Lefaucheur, Carmen ;
Loupy, Alexandre .
NATURE MEDICINE, 2024, 30 (08) :2320-2327
[3]   Application of the iBox prognostication system as a surrogate endpoint in the TRANSFORM randomised controlled trial: proof-of-concept study [J].
Aubert, Olivier ;
Divard, Gillian ;
Pascual, Julio ;
Oppenheimer, Federico ;
Sommerer, Claudia ;
Citterio, Franco ;
Tedesco, Helio ;
Chadban, Steve ;
Henry, Mitchell ;
Vincenti, Flavio ;
Srinivas, Titte ;
Watarai, Yoshihiko ;
Legendre, Christophe ;
Bernhardt, Peter ;
Loupy, Alexandre .
BMJ OPEN, 2021, 11 (10)
[4]   An international serum standard for application in assays to detect human complement activation products [J].
Bergseth, Grethe ;
Ludviksen, Judith K. ;
Kirschfink, Michael ;
Giclas, Patricia C. ;
Nilsson, Bo ;
Mollnes, Tom E. .
MOLECULAR IMMUNOLOGY, 2013, 56 (03) :232-239
[5]   A score of low-grade inflammation and risk of mortality: prospective findings from the Moli-sani study [J].
Bonaccio, Marialaura ;
Di Castelnuovo, Augusto ;
Pounis, George ;
De Curtis, Amalia ;
Costanzo, Simona ;
Persichillo, Mariarosaria ;
Cerletti, Chiara ;
Donati, Maria Benedetta ;
de Gaetano, Giovanni ;
Iacoviello, Licia .
HAEMATOLOGICA, 2016, 101 (11) :1434-1441
[6]   Allorecognition and the spectrum of kidney transplant rejection [J].
Callemeyn, Jasper ;
Lamarthee, Baptiste ;
Koenig, Alice ;
Koshy, Priyanka ;
Thaunat, Olivier ;
Naesens, Maarten .
KIDNEY INTERNATIONAL, 2022, 101 (04) :692-710
[7]   Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015 [J].
Coemans, Maarten ;
Suesal, Caner ;
Doehler, Bernd ;
Anglicheau, Dany ;
Giral, Magali ;
Bestard, Oriol ;
Legendre, Christophe ;
Emonds, Marie-Paule ;
Kuypers, Dirk ;
Molenberghs, Geert ;
Verbeke, Geert ;
Naesens, Maarten .
KIDNEY INTERNATIONAL, 2018, 94 (05) :964-973
[8]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[9]   Inflammation-associated graft loss in renal transplant recipients [J].
Dahle, Dag Olav ;
Mjoen, Geir ;
Oqvist, Bjorn ;
Scharnagl, Hubert ;
Weihrauch, Gisela ;
Grammer, Tanja ;
Maerz, Winfried ;
Abedini, Sadollah ;
Norby, Gudrun E. ;
Holme, Ingar ;
Fellstrom, Bengt ;
Jardine, Alan ;
Holdaas, Hallvard .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2011, 26 (11) :3756-3761
[10]   Statistics notes - Diagnostic tests 4: likelihood ratios [J].
Deeks, JJ ;
Altman, DG .
BRITISH MEDICAL JOURNAL, 2004, 329 (7458) :168-169