Pathogen and insect-mediated crop damage significantly reduces crop production. In addition to environmental concerns, many pests and pathogens have developed resistance to conventional chemical pesticides, underscoring the urgent need for novel pest control methods that minimize crop losses without impairing the environment. One promising approach is the exogenous application of double-stranded RNA (dsRNA), a key component of RNA interference (RNAi), which has proven effective in controlling a broad range of pathogens and insect pests across various crop species. dsRNA has gained attention for its ability to precisely target the genes involved in vital functions such as growth, development, and reproduction of the targeted pests. Silencing these genes through exogenous dsRNA application results in increased mortality among the insect pests and reduced the pathogenicity, making the approach as an ideal and eco-friendly pest control strategy. This approach can be integrated with other environmentally friendly pest management strategies to further mitigate crop damage. Chemical pesticides have several limitations, including environmental pollution, the development of pest resistance, harmful effects on beneficial insects and microbes, and biosecurity risks due to their persistence in the food chain and adverse impacts on human health. In contrast, dsRNA-based pesticides offer promising solutions to address many of these issues. However, their effectiveness is influenced by various factors, highlighting the need for further research to optimize dsRNA production, scalability, stability, and delivery methods to achieve maximum pest control efficacy. This review summarizes the current understanding of dsRNA biosynthesis through various strategies, and their production and delivery systems for its inclusion in sustainable and environmentally friendly pest management strategy.