When Device Modeling Meets Machine Learning: Opportunities and Challenges (Invited)

被引:0
作者
Zhang, Lining [1 ]
Peng, Baokang [1 ]
Li, Yu [1 ]
Liu, Hengyi [1 ]
Dai, Wu [1 ]
Wang, Runsheng [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Beijing, Peoples R China
来源
2024 ACM/IEEE 6TH SYMPOSIUM ON MACHINE LEARNING FOR CAD, MLCAD 2024 | 2024年
关键词
device modeling; compact model; artificial neural network; machine learning; NEURAL-NETWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Device modeling is essential for circuit simulations and designs in terms of constructing the circuit matrix equations of KCL and KVL. While there are classical methodologies, machine learning techniques are promising to bring innovations in the landscape of device modeling. This work reviews the device modeling from a top-down perspective, covering two different interpretations of modeling. Then the recent process in the domain-specific machine learning approaches is briefly summarized for logic and memory devices. The challenges ahead, for the machine learning model to support the industry's practical needs, are analyzed. A concept of fusion model, by deeply merging device physics and neural networks, is also explained.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Deep Learning-Based Fast BSIM-CMG Parameter Extraction for General Input Dataset [J].
Ashai, Aasim ;
Jadhav, Aakash ;
Behera, Amit Kumar ;
Roy, Sourajeet ;
Dasgupta, Avirup ;
Sarkar, Biplab .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (07) :3437-3441
[2]   CHARGE-SHEET MODEL OF MOSFET [J].
BREWS, JR .
SOLID-STATE ELECTRONICS, 1978, 21 (02) :345-355
[3]   Deep learning-based I-V Global Parameter Extraction for BSIM-CMG [J].
Chavez, Fredo ;
Tung, Chien-Ting ;
Kao, Ming-Yen ;
Hu, Chenming ;
Chen, Jen-Hao ;
Khandelwal, Sourabh .
SOLID-STATE ELECTRONICS, 2023, 209
[4]   Enhancement and Expansion of the Neural Network-Based Compact Model Using a Binning Method [J].
Choi, Jinyoung ;
Jeong, Hyunjoon ;
Woo, Sangmin ;
Cho, Hyungmin ;
Kim, Yohan ;
Kong, Jeong-Taek ;
Kim, Soyoung .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 :65-73
[5]  
Dai Wu, 2023, 2023 International Symposium of Electronics Design Automation (ISEDA), P423, DOI 10.1109/ISEDA59274.2023.10218514
[6]  
Dai W., 2022, P ICSICT, P1
[7]   Statistical Compact Modeling With Artificial Neural Networks [J].
Dai, Wu ;
Li, Yu ;
Rong, Zhao ;
Peng, Baokang ;
Zhang, Lining ;
Wang, Runsheng ;
Huang, Ru .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) :5156-5160
[8]  
Dobes J, 2012, JOINT INT CONF SOFT, P2130, DOI 10.1109/SCIS-ISIS.2012.6505343
[9]  
Ho TY, 2024, Arxiv, DOI arXiv:2403.07257
[10]   Deep Learning-Based BSIM-CMG Parameter Extraction for 10-nm FinFET [J].
Kao, Ming-Yen ;
Chavez, Fredo ;
Khandelwal, Sourabh ;
Hu, Chenming .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) :4765-4768