A Null-Player Axiom for the Myerson Value in Partition Function form Games: A Note

被引:0
|
作者
Sanchez-Perez, Joss [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Econ, Av Pintores S-N,Col B Estado, San Luis Potosi 78213, Mexico
关键词
Partition function form games; Myerson value; Shapley value; marginal contributions; null players; SHAPLEY VALUE;
D O I
10.1142/S021919892550001X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we explore solutions for partition function form games, where our basic approach is rooted in a concept of null player, derived directly from the carrier concept of Myerson [(1977) Int. J. Game Theory 6(1), 23-31]. We then show that the Myerson value cannot be characterized with the standard translation of Shapley's axioms of linearity, symmetry, efficiency and null-player to partition function form games. Instead, we provide an axiomatic characterization for the family of solutions for partition function form games satisfying those axioms, and we show that every such solution is a linear combination of specific marginal contributions of players.
引用
收藏
页数:19
相关论文
共 14 条
  • [1] AN AXIOM SYSTEM FOR A VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Albizuri, M. J.
    Arin, J.
    Rubio, J.
    INTERNATIONAL GAME THEORY REVIEW, 2005, 7 (01) : 63 - 72
  • [2] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [3] An axiomatic characterization of a value for games in partition function form
    Hu, Cheng-Cheng
    Yang, Yi-You
    SERIES-JOURNAL OF THE SPANISH ECONOMIC ASSOCIATION, 2010, 1 (04): : 475 - 487
  • [4] An axiomatic characterization of a value for games in partition function form
    Cheng-Cheng Hu
    Yi-You Yang
    SERIEs, 2010, 1 : 475 - 487
  • [5] THE SHAPLEY VALUE FOR PARTITION FUNCTION FORM GAMES
    Do, Kim Hang Pham
    Norde, Henk
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (02) : 353 - 360
  • [6] A coalition formation value for games in partition function form
    Grabisch, Michel
    Funaki, Yukihiko
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 175 - 185
  • [7] A Graphical Representation for Games in Partition Function Form
    Skibski, Oskar
    Michalak, Tomasz P.
    Sakurai, Yuko
    Wooldridge, Michael
    Yokoo, Makoto
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1036 - 1042
  • [8] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121
  • [9] Shapley Value in Partition Function Form Games: New Research Perspectives for Features Selection
    Bimonte, Giovanna
    Senatore, Luigi
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 103 - 108
  • [10] COMPROMISING IN PARTITION FUNCTION FORM GAMES AND COOPERATION IN PERFECT EXTENSIVE FORM GAMES
    Fukuda, E.
    Tijs, S. H.
    Branzei, R.
    Muto, S.
    INTERNATIONAL GAME THEORY REVIEW, 2006, 8 (03) : 329 - 338