Robust Piezoelectric-Derived Bilayer Solid Electrolyte Interphase for Zn Anodes Operating from-60 to 60 °C

被引:0
作者
Mu, Yongbiao [1 ,2 ]
Zhou, Yuke [1 ,2 ]
Chu, Youqi [1 ,2 ]
Wei, Xiyan [1 ]
Gu, Huicun [1 ,2 ]
Fang, Jiongchong [1 ]
Liao, Ruixi [1 ,2 ]
Wu, Fuhai [1 ,2 ]
Zhang, Qing [1 ,2 ]
He, Guanjie [3 ]
Zhou, Guangmin [4 ]
Zeng, Lin [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Adv Energy Storage, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
[3] UCL, Dept Chem, Christopher Ingold Labs, London WC1H 0AJ, England
[4] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518071, Peoples R China
关键词
Zn anodes; gel electrolytes; adaptive piezoelectriceffect; interface stability; wide temperature range; ZINC ANODE; SAFE;
D O I
10.1021/acsnano.5c00178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Research on the reversibility and long-term cycling stability of zinc-ion batteries (ZIBs) over a wide temperature range remains limited. One major challenge with gel electrolytes is ensuring the interface stability with Zn metal anodes under varying conditions. In this study, we introduce a multicomponent gel electrolyte that effectively addresses the interface stability challenges associated with Zn anodes under high current densities and wide temperature ranges. This advanced electrolyte is synthesized via the polymerization of poly(VDF-TrFE-CTFE) within a polyimide fiber network, which enables hydrogen-free and dendrite-free Zn deposition/stripping over 4350 h at 1 mA cm-2, even over 1500 h from -60 to 60 degrees C, even sustaining 20 mA cm-2 operation. Fluorine-rich components promote a self-adaptive bilayer solid electrolyte interphase (SEI) comprising an ultrathin amorphous outer layer and an inorganic/organic inner layer (ZnF2-ZnS-ZnO-ZnCO3), synergistically suppressing side reactions and guiding uniform Zn deposition via piezoelectric effects. Consequently, all-solid-state ZIBs paired with an iodine cathode achieve cycling stability: 36,500 cycles at 5 A g-1 (30 degrees C) and 1500 cycles at -30 degrees C, setting benchmarks for extreme-condition performance. This work advances interfacial engineering for high-rate, wide-temperature ZIBs through a rational electrolyte design and SEI modulation.
引用
收藏
页码:14161 / 14176
页数:16
相关论文
共 54 条
  • [1] Phase Inversion-Induced Porous Polymer Coating for High Rate and Stable Zinc Anode
    Bian, Haifeng
    Wang, Changhao
    Wang, Yongkang
    Ren, Yilun
    Ge, Yu
    Wu, Hao
    Wang, Biao
    Chen, Dongyuan
    Yang, Beibei
    Bin, Duan
    Li, Yunsong
    Gu, Jian
    Ma, Yujie
    Tang, Shaochun
    Meng, Xiangkang
    Lu, Hongbin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (33)
  • [2] Gradient design of imprinted anode for stable Zn-ion batteries
    Cao, Qinghe
    Gao, Yong
    Pu, Jie
    Zhao, Xin
    Wang, Yuxuan
    Chen, Jipeng
    Guan, Cao
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries
    Chen, Minfeng
    Chen, Jizhang
    Zhou, Weijun
    Han, Xiang
    Yao, Yagang
    Wong, Ching-Ping
    [J]. ADVANCED MATERIALS, 2021, 33 (09)
  • [4] Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes
    Chen, Xiujuan
    Li, Wei
    Hu, Shanshan
    Akhmedov, Novruz G.
    Reed, David
    Li, Xiaolin
    Liu, Xingbo
    [J]. NANO ENERGY, 2022, 98
  • [5] Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase
    Di, Shengli
    Nie, Xueyu
    Ma, Guoqiang
    Yuan, Wentao
    Wang, Yuanyuan
    Liu, Yongchang
    Shen, Shigang
    Zhang, Ning
    [J]. ENERGY STORAGE MATERIALS, 2021, 43 : 375 - 382
  • [6] Synergetic control of hydrogen evolution and ion-transport kinetics enabling Zn anodes with high-areal-capacity
    Dong, Ning
    Zhao, Xuesong
    Yan, Mengdie
    Li, Hong
    Pan, Huilin
    [J]. NANO ENERGY, 2022, 104
  • [7] Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries
    Du, Wencheng
    Ang, Edison Huixiang
    Yang, Yang
    Zhang, Yufei
    Ye, Minghui
    Li, Cheng Chao
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3330 - 3360
  • [8] High-Performance InZn Alloy Anodes toward Practical Aqueous Zinc Batteries
    Fayette, Matthew
    Chang, Hee Jung
    Li, Xiaolin
    Reed, David
    [J]. ACS ENERGY LETTERS, 2022, 7 (06) : 1888 - 1895
  • [9] Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries
    Ge, Haoyang
    Xie, Xian
    Xie, Xuesong
    Zhang, Bingyao
    Li, Shenglong
    Liang, Shuquan
    Lu, Bingan
    Zhou, Jiang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (10) : 3270 - 3306
  • [10] An Ether-Based Electrolyte Solvation Strategy for Long-Term Stability and Ultra-Low Temperature Li-Metal Batteries
    Gu, Rong
    Zhang, Da
    Zhu, Sheng
    Xu, Jinting
    Ding, Kun
    Gao, Qingwei
    Xu, Qunjie
    Shi, Penghui
    Li, Hexing
    Min, Yulin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)