Comparative transcriptomic analyses of diploid and tetraploid citrus reveal how ploidy level influences salt stress tolerance

被引:0
|
作者
Bonnin, Marie [1 ]
Soriano, Alexandre [2 ]
Favreau, Benedicte [2 ]
Lourkisti, Radia [1 ]
Miranda, Maeva [2 ]
Ollitrault, Patrick [2 ]
Oustric, Julie [1 ]
Berti, Liliane [1 ]
Santini, Jeremie [1 ]
Morillon, Raphael [2 ]
机构
[1] Univ Cors, Sci Environm Lab, UMR CNRS 6134, Sci Pour Environm SPE,Projet Ressources Nat Axe Ad, Ajaccio, France
[2] Univ Montpellier, Ctr cooperat Internatl Rech Agron Dev CIRAD, Inst Natl Res pour Agr Alimentat & Environm INRAE, Unite Mixtede Rech Ameliorat Genet & Adaptat Plant, Montpellier, France
来源
关键词
citrus; differentially expressed genes; salt stress; tetraploid; transcriptomic study; FALSE DISCOVERY RATE; CELL-WALL INTEGRITY; RHAMNOGALACTURONAN-I; OXIDATIVE STRESS; SPLICING FACTORS; GENE-EXPRESSION; EXTENSIN; PROTEIN; HOMOGALACTURONAN; ROOTSTOCKS;
D O I
10.3389/fpls.2024.1469115
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Citrus is an important fruit crop for human health. The sensitivity of citrus trees to a wide range of abiotic stresses is a major challenge for their overall growth and productivity. Among these abiotic stresses, salinity results in a significant loss of global citrus yield. In order to find straightforward and sustainable solutions for the future and to ensure citrus productivity, it is of paramount importance to decipher the mechanisms responsible for salinity stress tolerance. Thisstudy aimed to investigate how ploidy levels influence salt stress tolerance in citrus by comparing the transcriptomic responses of diploid and tetraploid genotypes. In a previous article we investigated the physiological and biochemical response of four genotypes with different ploidy levels: diploid trifoliate orange (Poncirus trifoliata [L.] Raf.) (PO2x) and Cleopatra mandarin (Citrus reshni Hort. Ex Tan.) (CL2x) and their respective tetraploids (PO4x, CL4x).Methods In this study, we useda multifactorial gene selection and gene clustering approach to finely dissect the influence of ploidy level on the salt stress response of each genotype. Following transcriptome sequencing, differentially expressed genes (DEGs) were identified in response to salt stress in leaves and roots of the different citrus genotypes.Result and discussion Gene expression profiles and functional characterization of genes involved in the response to salt stress, as a function of ploidy level and the interaction between stress response and ploidy level, have enabled us to highlight the mechanisms involved in the varieties tested. Saltstress induced overexpression of carbohydrate biosynthesis and cell wall remodelling- related genes specifically in CL4x Ploidy level enhanced oxidative stress response in PO and ion management capacity in both genotypes. Results further highlighted that under stress conditions, only the CL4x genotype up- regulated genes involved in sugar biosynthesis, transport management, cell wall remodelling, hormone signalling, enzyme regulation and antioxidant metabolism. These findings provide crucial insights that could inform breeding strategies for developing salt-tolerant citrus varieties.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat
    Meng, Heng-Ling
    Sun, Pei-Yuan
    Wang, Jia-Rui
    Sun, Xiao-Qian
    Zheng, Chuan-Zhi
    Fan, Ting
    Chen, Qing-Fu
    Li, Hong-You
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [32] Transcriptomic and metabolomic analyses reveal that ABA increases the salt tolerance of rice significantly correlated with jasmonic acid biosynthesis and flavonoid biosynthesis
    Han C.
    Chen G.
    Zheng D.
    Feng N.
    Scientific Reports, 13 (1)
  • [33] Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus)
    An, Yongping
    Wang, Qian
    Cui, Yannong
    Liu, Xin
    Wang, Ping
    Zhou, Yue
    Kang, Peng
    Chen, Youjun
    Wang, Zhiwei
    Zhou, Qingping
    Wang, Pei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Comparative physiological, biochemical and transcriptomic analyses to reveal potential regulatory mechanisms in response to starvation stress in Cipangopaludina chinensis
    Yuan, Chang
    Zhou, Kangqi
    Pan, Xianhui
    Wang, Dapeng
    Zhang, Caiqun
    Lin, Yong
    Chen, Zhong
    Qin, Junqi
    Du, Xuesong
    Huang, Yin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2024, 52
  • [35] Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants
    Zhang, Yi
    Chen, Haoting
    Liang, Ying
    Lu, Tao
    Liu, Zhiqian
    Jin, Xiu
    Hou, Leiping
    Xu, Jin
    Zhao, Hailiang
    Shi, Yu
    Ahammed, Golam Jalal
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 166 : 78 - 87
  • [36] Lipid Metabolomic and Transcriptomic Analyses Reveal That Phosphatidylcholine Enhanced the Resistance of Peach Seedlings to Salt Stress through Phosphatidic Acid
    Sun, Maoxiang
    Liu, Xiaolong
    Zhang, Binbin
    Yu, Wen
    Xiao, Yuansong
    Peng, Futian
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (23) : 8846 - 8858
  • [37] Comparative Transcriptomic and Metabolic Analyses Reveal the Coordinated Mechanisms in Pinus koraiensis under Different Light Stress Conditions
    Li, Yuxi
    Zhang, Xinxin
    Cai, Kewei
    Zhang, Qinhui
    Jiang, Luping
    Li, Hanxi
    Lv, Yuzhe
    Qu, Guanzheng
    Zhao, Xiyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [38] Transcriptomic and Physiological Analyses Reveal the Molecular Mechanism through Which Exogenous Melatonin Increases Drought Stress Tolerance in Chrysanthemum
    Luo, Yan
    Hu, Taotao
    Huo, Yunyun
    Wang, Lingling
    Zhang, Li
    Yan, Rui
    PLANTS-BASEL, 2023, 12 (07):
  • [39] Biochemical and Transcriptomic Analyses Reveal Key Salinity and Alkalinity Stress Response and Tolerance Pathways in Salix linearistipularis Inoculated with Trichoderma
    Han, Zhouqing
    Chen, Lili
    Wang, Wenyi
    Guan, Xueting
    Song, Junjie
    Ma, Shurong
    AGRONOMY-BASEL, 2024, 14 (10):
  • [40] Comparative transcriptome analysis of salt tolerance of roots in diploid and autotetraploid citrus rootstock (C. junos cv. Ziyang xiangcheng) and identification of salt tolerance-related genes
    Song, Xin
    Duan, Yao-Yuan
    Tan, Feng-Quan
    Ren, Jie
    Cao, Hui -Xiang
    Xie, Kai-Dong
    Wu, Xiao-Meng
    Guo, Wen-Wu
    SCIENTIA HORTICULTURAE, 2023, 317