Novel discretized gravitational search algorithm for effective medical hyperspectral band selection

被引:1
作者
Zhang, Chenglong [1 ]
Ma, Xiaopeng [1 ]
Zhang, Aizhu [2 ]
Yan, Bin [3 ]
Zhao, Kai [3 ]
Cheng, Qiyuan [4 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[2] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[3] Shandong First Med Univ, Shandong Prov Hosp, Jinan 250021, Peoples R China
[4] Shandong First Med Univ, Shandong Prov Hosp, Med Engn Dept, Jinan 250021, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Gravitational search algorithm; Medical hyperspectral images; Band selection; Dimensionality reduction; CLASSIFICATION; GSA;
D O I
10.1016/j.jfranklin.2024.107269
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical hyperspectral imaging present a promising avenue for non-invasive diagnostic methods for diseases. Nonetheless, the sparsity of medical hyperspectral data within high-dimensional spaces introduces the "curse of dimensionality", which diminishes the efficiency and accuracy of data processing efforts. Therefore, spectral dimensionality reduction emerges as an essential process in the analysis and utilization of MHSIs data. To retain the intrinsic properties of the spectral bands, an effective unsupervised band selection algorithm is proposed leveraging the gravitational search algorithm (GSA-UBS) to identify the optimal band subset. Taking into account the informational content and redundancy among candidate bands, a comprehensive evaluation criterion is established that incorporates a band distance matrix and an information entropy vector. Additionally, a straightforward discrete search strategy is developed that enables gravitational search algorithm to directly retrieve the original sequence numbers of the selected bands, bypassing the conventional 0-1 band weighting approach. The extensive evaluation of GSA-UBS on three publicly available invivo brain cancer MHSIs datasets and a remote sensing hyperspectral image demonstrates its superior performance compared to various stateof-the-art methods. The source code for GSA-UBS can be accessed at https://github.com/ zhangchenglong1116/GSA_UBS.
引用
收藏
页数:13
相关论文
共 54 条
[1]   GSA for machine learning problems: A comprehensive overview [J].
Avalos, Omar .
APPLIED MATHEMATICAL MODELLING, 2021, 92 :261-280
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[4]   A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification [J].
Chang, CI ;
Du, Q ;
Sun, TL ;
Althouse, MLG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (06) :2631-2641
[5]   Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction [J].
Cruz-Guerrero, Ines A. ;
Mejia-Rodriguez, Aldo R. ;
Ortega, Samuel ;
Fabelo, Himar ;
Callico, Gustavo M. ;
Jo, Javier A. ;
Campos-Delgado, Daniel U. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (15) :11165-11196
[6]   In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection [J].
Fabelo, Himar ;
Ortega, Samuel ;
Szolna, Adam ;
Bulters, Diederik ;
Pineiro, Juan F. ;
Kabwama, Silvester ;
J-O'Shanahan, Aruma ;
Bulstrode, Harry ;
Bisshopp, Sara ;
Kiran, B. Ravi ;
Ravi, Daniele ;
Lazcano, Raquel ;
Madronal, Daniel ;
Sosa, Coralia ;
Espino, Carlos ;
Marquez, Mariano ;
De La Luz Plaza, Maria ;
Camacho, Rafael ;
Carrera, David ;
Hernandez, Maria ;
Callico, Gustavo M. ;
Morera Molina, Jesus ;
Stanciulescu, Bogdan ;
Yang, Guang-Zhong ;
Salvador, Ruben ;
Juarez, Eduardo ;
Sanz, Cesar ;
Sarmiento, Roberto .
IEEE ACCESS, 2019, 7 :39098-39116
[7]   Deep Reinforcement Learning for Semisupervised Hyperspectral Band Selection [J].
Feng, Jie ;
Li, Di ;
Gu, Jing ;
Cao, Xianghai ;
Shang, Ronghua ;
Zhang, Xiangrong ;
Jiao, Licheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images [J].
Feng, Jie ;
Jiao, Licheng ;
Liu, Fang ;
Sun, Tao ;
Zhang, Xiangrong .
PATTERN RECOGNITION, 2016, 51 :295-309
[9]   Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne hyperspectral benchmark datasets [J].
Fu, Hang ;
Sun, Genyun ;
Zhang, Li ;
Zhang, Aizhu ;
Ren, Jinchang ;
Jia, Xiuping ;
Li, Feng .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 203 :115-134
[10]   Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spectral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery [J].
Fu, Hang ;
Sun, Genyun ;
Ren, Jinchang ;
Zhang, Aizhu ;
Jia, Xiuping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60