Strongly nonlinear periodic parabolic equation in Orlicz spaces

被引:0
作者
Ghita, Erriahi Elidrissi [1 ]
Elhoussine, Azroul [1 ]
Abdelilah, Lamrani Alaoui [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math & Comp Sci, BP 1769, Atlas Fez, Morocco
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2025年 / 70卷 / 01期
关键词
The periodic solution; nonlinear parabolic equation; Galerkin method; Orlicz spaces; weak solutions; RENORMALIZED SOLUTIONS; EXISTENCE;
D O I
10.24193/subbmath.2025.1.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of a weak solution to the following nonlinear periodic parabolic equations in Orlicz-spaces: partial derivative u/partial derivative t - div(a(x, t, del u)) = f(x, t) where -div(a(x, t, del u)) is a Leray-Lions operator defined on a subset of W-0(1,x) L-M(Q). The O2-condition is not assumed and the data f belongs to W E--1,x(M)(Q). The Galerkin method and the fixed point argument are employed in the proof.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 21 条
[1]   On the Regularity Criterion on One Velocity Component for the Micropolar Fluid Equations [J].
Agarwal, Ravi P. ;
Alghamdi, Ahmad M. ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (02) :271-284
[2]  
Azroul E, 2009, PORT MATH, V66, P29
[3]   Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (11) :1769-1784
[4]   STRONGLY NON-LINEAR PARABOLIC INITIAL-BOUNDARY VALUE-PROBLEMS [J].
BREZIS, H ;
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :38-40
[5]   INHOMOGENEOUS ORLICZ-SOBOLEV SPACES AND NONLINEAR PARABOLIC INITIAL VALUE-PROBLEMS [J].
DONALDSON, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) :201-256
[6]  
El Hachimi A., 2010, Recent Developments in Nonlinear Analysis
[7]  
El Hachimi A., 2002, Electron. J. Differential Equations, V9, P117
[8]  
El Hachimi A, 2008, APPL MATH E-NOTES, V8, P1
[9]   On a Class of Schrodinger System Problem in Orlicz-Sobolev Spaces [J].
El-Houari, H. ;
Chadli, L. S. ;
Moussa, H. .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[10]  
Elmahi A., 2005, Ann. Polon. Math., V85, P99