Variation and evolution analysis of SARS-CoV-2 using self-game sequence optimization

被引:0
作者
Liu, Ziyu [1 ]
Shen, Yi [2 ]
Jiang, Yunliang [3 ]
Zhu, Hancan [4 ]
Hu, Hailong [1 ]
Kang, Yanlei [1 ]
Chen, Ming [2 ]
Li, Zhong [1 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Huzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua, Zhejiang, Peoples R China
[4] Shaoxing Univ, Sch Math Phys & Informat, Shaoxing, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; SARS-CoV-2; evolution analysis; self-game sequence optimization; DARSEP model; PREDICTION; ALGORITHM; LANGUAGE;
D O I
10.3389/fmicb.2024.1485748
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Introduction The evolution of SARS-CoV-2 has precipitated the emergence of new mutant strains, some exhibiting enhanced transmissibility and immune evasion capabilities, thus escalating the infection risk and diminishing vaccine efficacy. Given the continuous impact of SARS-CoV-2 mutations on global public health, the economy, and society, a profound comprehension of potential variations is crucial to effectively mitigate the impact of viral evolution. Yet, this task still faces considerable challenges.Methods This study introduces DARSEP, a method based on Deep learning Associates with Reinforcement learning for SARS-CoV-2 Evolution Prediction, combined with self-game sequence optimization and RetNet-based model.Results DARSEP accurately predicts evolutionary sequences and investigates the virus's evolutionary trajectory. It filters spike protein sequences with optimal fitness values from an extensive mutation space, selectively identifies those with a higher likelihood of evading immune detection, and devises a superior evolutionary analysis model for SARS-CoV-2 spike protein sequences. Comprehensive downstream task evaluations corroborate the model's efficacy in predicting potential mutation sites, elucidating SARS-CoV-2's evolutionary direction, and analyzing the development trends of Omicron variant strains through semantic changes.Conclusion Overall, DARSEP enriches our understanding of the dynamic evolution of SARS-CoV-2 and provides robust support for addressing present and future epidemic challenges.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression
    King, Samuel
    Chen, Xinyi E.
    Ng, Sarah W. S.
    Rostin, Kimia
    Hahn, Samuel V.
    Roberts, Tylo
    Schwab, Janella C.
    Sekhon, Parneet
    Kagieva, Madina
    Reilly, Taylor
    Qi, Ruo Chen
    Salman, Paarsa
    Hong, Ryan J.
    Ma, Eric J.
    Hallam, Steven J.
    FRONTIERS IN SYSTEMS BIOLOGY, 2024, 4
  • [32] Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency
    Zhang, Chun-Hui
    Spasov, Krasimir A.
    Reilly, Raquel A.
    Hollander, Klarissa
    Stone, Elizabeth A.
    Ippolito, Joseph A.
    Liosi, Maria-Elena
    Deshmukh, Maya G.
    Tirado-Rives, Julian
    Zhang, Shuo
    Liang, Zhuobin
    Miller, Scott J.
    Isaacs, Farren
    Lindenbach, Brett D.
    Anderson, Karen S.
    Jorgensen, William L.
    ACS MEDICINAL CHEMISTRY LETTERS, 2021, 12 (08): : 1325 - 1332
  • [33] Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization
    Shan, Sisi
    Luo, Shitong
    Yang, Ziqing
    Hong, Junxian
    Su, Yufeng
    Ding, Fan
    Fu, Lili
    Li, Chenyu
    Chen, Peng
    Ma, Jianzhu
    Shi, Xuanling
    Zhang, Qi
    Berger, Bonnie
    Zhang, Linqi
    Peng, Jian
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (11)
  • [34] Shape Complementarity Optimization of Antibody-Antigen Interfaces: The Application to SARS-CoV-2 Spike Protein
    De Lauro, Alfredo
    Di Rienzo, Lorenzo
    Miotto, Mattia
    Olimpieri, Pier Paolo
    Milanetti, Edoardo
    Ruocco, Giancarlo
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [35] Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations
    Kensinger, Adam H.
    Makowski, Joseph A.
    Pellegrene, Kendy A.
    Imperatore, Joshua A.
    Cunningham, Caylee L.
    Frye, Caleb J.
    Lackey, Patrick E.
    Mihailescu, Mihaela Rita
    Evanseck, Jeffrey D.
    ACS PHYSICAL CHEMISTRY AU, 2023, 3 (01): : 30 - 43
  • [36] Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting
    Tariq, Muhammad Usman
    Ismail, Shuhaida Binti
    Babar, Muhammad
    Ahmad, Ashir
    PLOS ONE, 2023, 18 (07):
  • [37] Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health?
    Talotta, Rossella
    Bahrami, Shervin
    Laska, Magdalena Janina
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2022, 1868 (02):
  • [38] Self and Nonself Short Constituent Sequences of Amino Acids in the SARS-CoV-2 Proteome for Vaccine Development
    Otaki, Joji M.
    Nakasone, Wataru
    Nakamura, Morikazu
    COVID, 2021, 1 (03): : 555 - 574
  • [39] Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients
    Wang, Yanqun
    Wang, Daxi
    Zhang, Lu
    Sun, Wanying
    Zhang, Zhaoyong
    Chen, Weijun
    Zhu, Airu
    Huang, Yongbo
    Xiao, Fei
    Yao, Jinxiu
    Gan, Mian
    Li, Fang
    Luo, Ling
    Huang, Xiaofang
    Zhang, Yanjun
    Sook-san Wong
    Cheng, Xinyi
    Ji, Jingkai
    Ou, Zhihua
    Xiao, Minfeng
    Li, Min
    Li, Jiandong
    Ren, Peidi
    Deng, Ziqing
    Zhong, Huanzi
    Xu, Xun
    Song, Tie
    Mok, Chris Ka Pun
    Peiris, Malik
    Zhong, Nanshan
    Zhao, Jingxian
    Li, Yimin
    Li, Junhua
    Zhao, Jincun
    GENOME MEDICINE, 2021, 13 (01)
  • [40] Empirical Comparison and Analysis of Artificial Intelligence-Based Methods for Identifying Phosphorylation Sites of SARS-CoV-2 Infection
    Lai, Hongyan
    Zhu, Tao
    Xie, Sijia
    Luo, Xinwei
    Hong, Feitong
    Luo, Diyu
    Dao, Fuying
    Lin, Hao
    Shu, Kunxian
    Lv, Hao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (24)