Variation and evolution analysis of SARS-CoV-2 using self-game sequence optimization

被引:0
|
作者
Liu, Ziyu [1 ]
Shen, Yi [2 ]
Jiang, Yunliang [3 ]
Zhu, Hancan [4 ]
Hu, Hailong [1 ]
Kang, Yanlei [1 ]
Chen, Ming [2 ]
Li, Zhong [1 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Huzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua, Zhejiang, Peoples R China
[4] Shaoxing Univ, Sch Math Phys & Informat, Shaoxing, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; SARS-CoV-2; evolution analysis; self-game sequence optimization; DARSEP model; PREDICTION; ALGORITHM; LANGUAGE;
D O I
10.3389/fmicb.2024.1485748
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Introduction The evolution of SARS-CoV-2 has precipitated the emergence of new mutant strains, some exhibiting enhanced transmissibility and immune evasion capabilities, thus escalating the infection risk and diminishing vaccine efficacy. Given the continuous impact of SARS-CoV-2 mutations on global public health, the economy, and society, a profound comprehension of potential variations is crucial to effectively mitigate the impact of viral evolution. Yet, this task still faces considerable challenges.Methods This study introduces DARSEP, a method based on Deep learning Associates with Reinforcement learning for SARS-CoV-2 Evolution Prediction, combined with self-game sequence optimization and RetNet-based model.Results DARSEP accurately predicts evolutionary sequences and investigates the virus's evolutionary trajectory. It filters spike protein sequences with optimal fitness values from an extensive mutation space, selectively identifies those with a higher likelihood of evading immune detection, and devises a superior evolutionary analysis model for SARS-CoV-2 spike protein sequences. Comprehensive downstream task evaluations corroborate the model's efficacy in predicting potential mutation sites, elucidating SARS-CoV-2's evolutionary direction, and analyzing the development trends of Omicron variant strains through semantic changes.Conclusion Overall, DARSEP enriches our understanding of the dynamic evolution of SARS-CoV-2 and provides robust support for addressing present and future epidemic challenges.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] In silico SARS-CoV-2 vaccine development for Omicron strain using reverse vaccinology
    Li, Vladimir
    Lee, Chul
    Yoo, DongAhn
    Cho, Seoae
    Kim, Heebal
    GENES & GENOMICS, 2022, 44 (8) : 937 - 944
  • [22] Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
    Rancati, Simone
    Nicora, Giovanna
    Prosperi, Mattia
    Bellazzi, Riccardo
    Salemi, Marco
    Marini, Simone
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [23] A multi-epitope self-amplifying mRNA SARS-CoV-2 vaccine design using a reverse vaccinology approach
    Claudia, Brigitta
    Nugrahapraja, Husna
    Giri-Rachman, Ernawati Arifin
    RESEARCH IN PHARMACEUTICAL SCIENCES, 2024, 19 (05) : 520 - 548
  • [24] Multi-Epitope Vaccine Design Using an Immunoinformatic Approach for SARS-CoV-2
    Feng, Ye
    Jiang, Haiping
    Qiu, Min
    Liu, Liang
    Zou, Shengmei
    Li, Yun
    Guo, Qianpeng
    Han, Ning
    Sun, Yingqiang
    Wang, Kui
    Lu, Lantian
    Zhuang, Xinlei
    Zhang, Shanshan
    Chen, Shuqing
    Mo, Fan
    PATHOGENS, 2021, 10 (06):
  • [25] Transmission Probability of SARS-CoV-2 in Office Environment Using Artificial Neural Network
    Kapoor, Nishant Raj
    Kumar, Ashok
    Kumar, Anuj
    Kumar, Anil
    Kumar, Krishna
    IEEE ACCESS, 2022, 10 : 121204 - 121229
  • [26] Cluster analysis and forecasting of viruses incidence growth curves: Application to SARS-CoV-2
    Diaz-Lozano, Miguel
    Guijo-Rubio, David
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [27] In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2
    Erol, Ismail
    Kotil, Seyfullah Enes
    Fidan, Ozkan
    Yetiman, Ahmet E.
    Durdagi, Serdar
    Ortakci, Fatih
    PROBIOTICS AND ANTIMICROBIAL PROTEINS, 2023, 15 (01) : 17 - 29
  • [28] Multivariable Risk Modelling and Survival Analysis with Machine Learning in SARS-CoV-2 Infection
    Ciarmiello, Andrea
    Tutino, Francesca
    Giovannini, Elisabetta
    Milano, Amalia
    Barattini, Matteo
    Yosifov, Nikola
    Calvi, Debora
    Setti, Maurizo
    Sivori, Massimiliano
    Sani, Cinzia
    Bastreri, Andrea
    Staffiere, Raffaele
    Stefanini, Teseo
    Artioli, Stefania
    Giovacchini, Giampiero
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (22)
  • [29] Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis
    Herrera, Natalia G.
    Morano, Nicholas C.
    Celikgil, Alev
    Georgiev, George, I
    Malonis, Ryan J.
    Lee, James H.
    Tong, Karen
    Vergnolle, Olivia
    Massimi, Aldo B.
    Yen, Laura Y.
    Noble, Alex J.
    Kopylov, Mykhailo
    Bonanno, Jeffrey B.
    Garrett-Thomson, Sarah C.
    Hayes, David B.
    Bortz, Robert H., III
    Wirchnianski, Ariel S.
    Florez, Catalina
    Laudermilch, Ethan
    Haslwanter, Denise
    Fels, J. Maximilian
    Dieterle, M. Eugenia
    Jangra, Rohit K.
    Barnhill, Jason
    Mengotto, Amanda
    Kimmel, Duncan
    Daily, Johanna P.
    Pirofski, Liise-anne
    Chandran, Kartik
    Brenowitz, Michael
    Garforth, Scott J.
    Eng, Edward T.
    Lai, Jonathan R.
    Almo, Steven C.
    ACS OMEGA, 2021, 6 (01): : 85 - 102
  • [30] Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression
    King, Samuel
    Chen, Xinyi E.
    Ng, Sarah W. S.
    Rostin, Kimia
    Hahn, Samuel V.
    Roberts, Tylo
    Schwab, Janella C.
    Sekhon, Parneet
    Kagieva, Madina
    Reilly, Taylor
    Qi, Ruo Chen
    Salman, Paarsa
    Hong, Ryan J.
    Ma, Eric J.
    Hallam, Steven J.
    FRONTIERS IN SYSTEMS BIOLOGY, 2024, 4