Variation and evolution analysis of SARS-CoV-2 using self-game sequence optimization

被引:0
|
作者
Liu, Ziyu [1 ]
Shen, Yi [2 ]
Jiang, Yunliang [3 ]
Zhu, Hancan [4 ]
Hu, Hailong [1 ]
Kang, Yanlei [1 ]
Chen, Ming [2 ]
Li, Zhong [1 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Huzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Life Sci, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua, Zhejiang, Peoples R China
[4] Shaoxing Univ, Sch Math Phys & Informat, Shaoxing, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; SARS-CoV-2; evolution analysis; self-game sequence optimization; DARSEP model; PREDICTION; ALGORITHM; LANGUAGE;
D O I
10.3389/fmicb.2024.1485748
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Introduction The evolution of SARS-CoV-2 has precipitated the emergence of new mutant strains, some exhibiting enhanced transmissibility and immune evasion capabilities, thus escalating the infection risk and diminishing vaccine efficacy. Given the continuous impact of SARS-CoV-2 mutations on global public health, the economy, and society, a profound comprehension of potential variations is crucial to effectively mitigate the impact of viral evolution. Yet, this task still faces considerable challenges.Methods This study introduces DARSEP, a method based on Deep learning Associates with Reinforcement learning for SARS-CoV-2 Evolution Prediction, combined with self-game sequence optimization and RetNet-based model.Results DARSEP accurately predicts evolutionary sequences and investigates the virus's evolutionary trajectory. It filters spike protein sequences with optimal fitness values from an extensive mutation space, selectively identifies those with a higher likelihood of evading immune detection, and devises a superior evolutionary analysis model for SARS-CoV-2 spike protein sequences. Comprehensive downstream task evaluations corroborate the model's efficacy in predicting potential mutation sites, elucidating SARS-CoV-2's evolutionary direction, and analyzing the development trends of Omicron variant strains through semantic changes.Conclusion Overall, DARSEP enriches our understanding of the dynamic evolution of SARS-CoV-2 and provides robust support for addressing present and future epidemic challenges.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective
    Sinha, Anushree
    Sangeet, Satyam
    Roy, Susmita
    ACS OMEGA, 2023, 8 (26): : 23283 - 23304
  • [2] ceRNA analysis of SARS-CoV-2
    Arancio, Walter
    ARCHIVES OF VIROLOGY, 2021, 166 (01) : 271 - 274
  • [3] Predicting the antigenic evolution of SARS-COV-2 with deep learning
    Han, Wenkai
    Chen, Ningning
    Xu, Xinzhou
    Sahil, Adil
    Zhou, Juexiao
    Li, Zhongxiao
    Zhong, Huawen
    Gao, Elva
    Zhang, Ruochi
    Wang, Yu
    Sun, Shiwei
    Cheung, Peter Pak-Hang
    Gao, Xin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification
    Camara, Gabriel B. M.
    Coutinho, Maria G. F.
    da Silva, Lucileide M. D.
    Gadelha, Walter V. do N.
    Torquato, Matheus F.
    Barbosa, Raquel de M.
    Fernandes, Marcelo A. C.
    SENSORS, 2022, 22 (15)
  • [5] New framework for recombination and adaptive evolution analysis with application to the novel coronavirus SARS-CoV-2
    Wang, Yinghan
    Zeng, Jinfeng
    Zhang, Chi
    Chen, Cai
    Qiu, Zekai
    Pang, Jiali
    Xu, Yutian
    Dong, Zhiqi
    Song, Yanxin
    Liu, Weiying
    Dong, Peipei
    Sun, Litao
    Chen, Yao-Qing
    Shu, Yuelong
    Du, Xiangjun
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [6] Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses
    Cagliani, Rachele
    Forni, Diego
    Clerici, Mario
    Sironi, Manuela
    INFECTION GENETICS AND EVOLUTION, 2020, 83
  • [7] Persistent Topological Laplacian Analysis of SARS-CoV-2 Variants
    Wei, Xiaoqi
    Chen, Jiahui
    Wei, Guo-Wei
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2023, 22 (05): : 569 - 587
  • [8] Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis
    N'Guessan, Arnaud
    Kailasam, Senthilkumar
    Mostefai, Fatima
    Poujol, Raphael
    Grenier, Jean-Christophe
    Ismailova, Nailya
    Contini, Paola
    De Palma, Raffaele
    Haber, Carsten
    Stadler, Volker
    Bourque, Guillaume
    Hussin, Julie G.
    Shapiro, B. Jesse
    Fritz, Jorg H.
    Piccirillo, Ciriaco A.
    ISCIENCE, 2023, 26 (08)
  • [9] Genome sequence diversity of SARS-CoV-2 obtained from clinical samples in Uzbekistan
    Abdullaev, Alisher
    Abdurakhimov, Abrorjon
    Mirakbarova, Zebinisa
    Ibragimova, Shakhnoza
    Tsoy, Vladimir
    Nuriddinov, Sharofiddin
    Dalimova, Dilbar
    Turdikulova, Shahlo
    Abdurakhmonov, Ibrokhim
    PLOS ONE, 2022, 17 (06):
  • [10] Analysis of Protein-Ligand Interactions of SARS-CoV-2 Against Selective Drug Using Deep Neural Networks
    Yuvaraj, Natarajan
    Srihari, Kannan
    Chandragandhi, Selvaraj
    Raja, Rajan Arshath
    Dhiman, Gaurav
    Kaur, Amandeep
    BIG DATA MINING AND ANALYTICS, 2021, 4 (02) : 76 - 83