Finite element error estimation for parabolic optimal control problems with time delay

被引:0
|
作者
Zhang, Xindan [1 ]
Zhao, Jianping [1 ,2 ]
Hou, Yanren [1 ,3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Inst Math & Phys, Urumqi 830046, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
国家重点研发计划;
关键词
Optimal control problem; Parabolic equation; Time delay; Finite element method; A priori error estimate; PARTIAL-DIFFERENTIAL-EQUATIONS; SPECTRAL METHOD; DISCRETIZATION; SYSTEMS; SUPERCONVERGENCE; SCHEME; STATE;
D O I
10.1016/j.apnum.2025.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a priori error estimates for the finite element approximations of parabolic optimal control problems with time delay and pointwise control constraints. At first, we derive the first-order optimality systems for the control problems and the corresponding regularity results. Then, to approximate the problem we use the piecewise linear and continuous finite elements for the space discretization of the state, while the piecewise constant discontinuous Galerkin method is used for the time discretization. For the control discretization, we consider variational discretization. We show O(k+h2) order of convergence rate for the control in the L2 norm, which is new to the best of our knowledge. Finally, some numerical examples are provided to confirm our theoretical results.
引用
收藏
页码:176 / 196
页数:21
相关论文
共 50 条
  • [1] Finite Element Error Estimation for Parabolic Optimal Control Problems with Pointwise Observations
    Liang, Dongdong
    Gong, Wei
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 165 - 199
  • [2] Finite element error estimation for parabolic optimal control with measurement data
    Yang, Xun
    Luo, Xianbing
    RESULTS IN APPLIED MATHEMATICS, 2024, 22
  • [3] A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems
    Meidner, D.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 645 - 652
  • [4] A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems
    Ira Neitzel
    Boris Vexler
    Numerische Mathematik, 2012, 120 : 345 - 386
  • [5] A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC TIME-OPTIMAL CONTROL PROBLEMS
    Bonifacius, Lucas
    Pieper, Konstantin
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 129 - 162
  • [6] A PRIORI ERROR ANALYSIS FOR FINITE ELEMENT APPROXIMATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Gong, Wei
    Hinze, Michael
    Zhou, Zhaojie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 97 - 119
  • [7] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02): : 145 - 165
  • [8] A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems
    Neitzel, Ira
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2012, 120 (02) : 345 - 386
  • [9] Space-time finite element approximation of parabolic optimal control problems
    Gong, W.
    Hinze, M.
    Zhou, Z. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (02) : 111 - 145