Radiomics and Radiogenomics Platforms Integrating Machine Learning Techniques: A Review

被引:0
作者
Oliveira, Rafael [1 ]
Martinho, Beatriz [1 ]
Vieiral, Ana [1 ]
Rocha, Nelson Pacheco [2 ]
机构
[1] Univ Aveiro, Dept Med Sci, Aveiro, Portugal
[2] Univ Aveiro, Dept Med Sci, IEETA, Aveiro, Portugal
来源
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3, WORLDCIST 2023 | 2024年 / 801卷
关键词
Radiomics; Radiogenomics; Machine Learning; Oncology; Medical Imaging; Precision Medicine; CANCER;
D O I
10.1007/978-3-031-45648-0_42
中图分类号
学科分类号
摘要
Radiomics and radiogenomics are still new fields to be explored in oncology, although there are several platforms and tools already developed, or in development. This review aimed to identify the current state of the art of radiomics and radiogenomics in terms of platforms and tools integrating machine learning techniques to support the analysis of medical imaging studies of oncological patients. A systematic literature search was performed, and 19 studies were included in the review. These studies were published between 2016 and 2022 and considered several platforms and tools integrating machine learning techniques for the analysis of medical imaging studies of oncological patients together with molecular and clinical endpoints. However, the included articles present scarce evidence related to the translation of the reported platforms and tools to the clinical practice.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 30 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm [J].
Amini, Mehdi ;
Hajianfar, Ghasem ;
Avval, Atlas Hadadi ;
Nazari, Mostafa ;
Deevband, Mohammad Reza ;
Oveisi, Mehrdad ;
Shiri, Isaac ;
Zaidi, Habib .
CLINICAL ONCOLOGY, 2022, 34 (02) :114-127
[3]   Discovery of pre-therapy 2-deoxy-2-18F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients [J].
Arshad, Mubarik A. ;
Thornton, Andrew ;
Lu, Haonan ;
Tam, Henry ;
Wallitt, Kathryn ;
Rodgers, Nicola ;
Scarsbrook, Andrew ;
McDermott, Garry ;
Cook, Gary J. ;
Landau, David ;
Chua, Sue ;
O'Connor, Richard ;
Dickson, Jeanette ;
Power, Danielle A. ;
Barwick, Tara D. ;
Rockall, Andrea ;
Aboagye, Eric O. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (02) :455-466
[4]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[5]   Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma [J].
Beig, Niha ;
Bera, Kaustav ;
Prasanna, Prateek ;
Antunes, Jacob ;
Correa, Ramon ;
Singh, Salendra ;
Bamashmos, Anas Saeed ;
Ismail, Marwa ;
Braman, Nathaniel ;
Verma, Ruchika ;
Hill, Virginia B. ;
Statsevych, Volodymyr ;
Ahluwalia, Manmeet S. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Tiwari, Pallavi .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1866-1876
[6]   Rapid development of image analysis research tools: Bridging the gap between researcher and clinician with pyOsiriX [J].
Blackledge, Matthew D. ;
Collins, David J. ;
Koh, Dow-Mu ;
Leach, Martin O. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 69 :203-212
[7]   Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics [J].
Choi, Ji Whae ;
Hu, Rong ;
Zhao, Yijun ;
Purkayastha, Subhanik ;
Wu, Jing ;
McGirr, Aidan J. ;
Stavropoulos, S. William ;
Silva, Alvin C. ;
Soulen, Michael C. ;
Palmer, Matthew B. ;
Zhang, Paul J. L. ;
Zhu, Chengzhang ;
Ahn, Sun Ho ;
Bai, Harrison X. .
ABDOMINAL RADIOLOGY, 2021, 46 (06) :2656-2664
[8]   What can artificial intelligence teach us about the molecular mechanisms underlying disease? [J].
Cook, Gary J. R. ;
Goh, Vicky .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2715-2721
[9]   Visual Analytics for Hypothesis-Driven Exploration in Computational Pathology [J].
Corvo, A. ;
Caballero, H. S. Garcia ;
Westenberg, M. A. ;
van Driel, M. A. ;
van Wijk, J. J. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (10) :3851-3866
[10]   A data management infrastructure for the integration of imaging and omics data in life sciences [J].
Cuellar, Luis Kuhn ;
Friedrich, Andreas ;
Gabernet, Gisela ;
de la Garza, Luis ;
Fillinger, Sven ;
Seyboldt, Adrian ;
Koch, Tobias ;
Zur Oven-Krockhaus, Sven ;
Wanke, Friederike ;
Richter, Sandra ;
Thaiss, Wolfgang M. ;
Horger, Marius ;
Malek, Nisar ;
Harter, Klaus ;
Bitzer, Michael ;
Nahnsen, Sven .
BMC BIOINFORMATICS, 2022, 23 (01)