NORMALIZED SOLUTIONS FOR KIRCHHOFF EQUATIONS WITH CHOQUARD NONLINEARITY

被引:0
作者
Wang, Zhi-Jie [1 ]
Sun, Hong-Rui [1 ]
Liu, Jianlun [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
关键词
Choquard nonlinearity; Kirchhoff equation; normalized ground state solution; defocusing case; Hardy-Littlewood-Sobolev upper exponent; QUALITATIVE PROPERTIES; SCHRODINGER-EQUATIONS; GROUND-STATES; EXISTENCE;
D O I
10.3934/dcds.2024131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the qualitative analysis of solutions for the following Kirchhoff equation with mixed nonlinearities -(a + b integral(3)(R) |del u|(2)dx) Delta u -lambda u = mu|u|(q-2) + (I-infinity * |u|(p))|u|(p-2)u, x is an element of R-3 with prescribed mass integral(3)(R) |u|(2)dx = c(2), where a; b; c > 0, mu is an element of R, alpha is an element of ( 5/3, 3), 2 < q < 10/3, 14/3 < p <= 3 + alpha. We prove several existence results to the above problem, where mu is a positive parameter. Here, 3 + ff is the HardyLittlewood-Sobolev upper critical exponent, which can be seen as the Sobolev critical exponent 2*. The proof of the Palais-Smale condition is a challenge when p = 3+ alpha. So we present a different method of dealing with compactness compared to the general way handling the Sobolev critical term. Finally, while for the defocusing situation mu < 0, we prove an existence result by constructing a minimax characterization for the energy functional.
引用
收藏
页码:1335 / 1365
页数:31
相关论文
共 41 条
[1]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   Normalized solutions for the double-phase problem with nonlocal reaction [J].
Cai, Li ;
Zhang, Fubao .
ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
[7]   Normalized Solutions of Mass Supercritical Kirchhoff Equation with Potential [J].
Cai, Li ;
Zhang, Fubao .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
[8]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[9]   NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R2 [J].
Chen, Sitong ;
Ruadulescu, Vicentiu d. ;
Tang, Xianhua ;
Yuan, Shuai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) :7704-7740
[10]   Nehari-type ground state solutions for a Choquard equation with doubly critical exponents [J].
Chen, Sitong ;
Tang, Xianhua ;
Wei, Jiuyang .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :152-171