Types in torsion free Abelian groups

被引:0
作者
Bunina, Elena [1 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
关键词
Elementary equivalence; isotypic equivalence; torsion-free Abelian groups; types;
D O I
10.1080/00927872.2025.2462277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study (logical) types and isotypical equivalence of torsion-free Abelian groups. We describe all possible types of elements and standard 2-tuples of elements in these groups, and we classify separable torsion-free Abelian groups up to isotypicity.
引用
收藏
页码:3524 / 3535
页数:12
相关论文
共 22 条
[1]  
Baer Reinhold., 1937, DUKE MATH J, V3, P68
[2]   Algebraic geometry over groups I. Algebraic sets and ideal theory [J].
Baumslag, G ;
Myasnikov, A ;
Remeslennikov, V .
JOURNAL OF ALGEBRA, 1999, 219 (01) :16-79
[3]   ELIMINATION OF QUANTIFIERS FOR MODULES [J].
BAUR, W .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 25 (1-2) :64-70
[4]   Geometric equivalence of algebras [J].
Berzins, A .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2001, 11 (04) :447-456
[5]  
Bunina E., 2024, ARXIV
[6]  
Bunina E, 2024, SARAJEVO JOURNAL OF MATHEMATICS, V20, P61, DOI [10.5644/sjm.20.01.06, 10.5644/SJM.20.01.06, DOI 10.5644/SJM.20.01.06]
[7]  
Daniyarova EY, 2021, Journal of Mathematical Sciences, V257, P797, DOI [10.1007/s10958-021-05520-1, 10.1007/s10958-021-05520-1, DOI 10.1007/S10958-021-05520-1]
[8]  
Daniyarova EY., 2016, Algebraic Geometry over Algebraic Structures
[9]  
Eklof P.C., 1972, ANN MATH LOGIC, V4, P115, DOI DOI 10.1016/0003-4843(72)90013-7
[10]  
Fuchs Laszlo., 1973, INFINITE ABELIAN GRO