Towards multi-task learning of speech and speaker recognition

被引:0
|
作者
Vaessen, Nik [1 ]
van Leeuwen, David A. [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, Nijmegen, Netherlands
来源
INTERSPEECH 2023 | 2023年
关键词
multi-task learning; speech recognition; speaker recognition; wav2vec2;
D O I
10.21437/Interspeech.2023-353
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We study multi-task learning for two orthogonal speech technology tasks: speech and speaker recognition. We use wav2vec2 as a base architecture with two task-specific output heads. We experiment with different architectural decisions to mix speaker and speech information in the output sequence as well as different optimization strategies. Our multi-task learning networks can produce a shared speaker and speech embedding, which on first glance achieve a performance comparable to separate single-task models. However, we show that the multi-task networks have strongly degraded performance on out-of-distribution evaluation data compared to the single-task models. Code and model checkpoints are available at https://github.com/nikvaessen/disjoint-mtl.
引用
收藏
页码:4898 / 4902
页数:5
相关论文
共 50 条
  • [1] Speech Emotion Recognition with Multi-task Learning
    Cai, Xingyu
    Yuan, Jiahong
    Zheng, Renjie
    Huang, Liang
    Church, Kenneth
    INTERSPEECH 2021, 2021, : 4508 - 4512
  • [2] MULTI-OBJECTIVE MULTI-TASK LEARNING ON RNNLM FOR SPEECH RECOGNITION
    Song, Minguang
    Zhao, Yunxin
    Wang, Shaojun
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 197 - 203
  • [3] Multi-task learning for X-vector based speaker recognition
    Zhang Y.
    Liu L.
    International Journal of Speech Technology, 2023, 26 (04) : 817 - 823
  • [4] Speech Emotion Recognition based on Multi-Task Learning
    Zhao, Huijuan
    Han Zhijie
    Wang, Ruchuan
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 186 - 188
  • [5] A Pseudo-task Design in Multi-task Learning Deep Neural Network for Speaker Recognition
    Lu, Xugang
    Shen, Peng
    Tsao, Yu
    Kawai, Hisashi
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [6] Multi-task Learning for Speech Emotion and Emotion Intensity Recognition
    Yue, Pengcheng
    Qu, Leyuan
    Zheng, Shukai
    Li, Taihao
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1232 - 1237
  • [7] Hear No Evil: Towards Adversarial Robustness of Automatic Speech Recognition via Multi-Task Learning
    Das, Nilaksh
    Chau, Duen Horng
    INTERSPEECH 2022, 2022, : 3839 - 3843
  • [8] Speech Emotion Recognition using Decomposed Speech via Multi-task Learning
    Hsu, Jia-Hao
    Wu, Chung-Hsien
    Wei, Yu-Hung
    INTERSPEECH 2023, 2023, : 4553 - 4557
  • [9] TASK AWARE MULTI-TASK LEARNING FOR SPEECH TO TEXT TASKS
    Indurthi, Sathish
    Zaidi, Mohd Abbas
    Lakumarapu, Nikhil Kumar
    Lee, Beomseok
    Han, Hyojung
    Ahn, Seokchan
    Kim, Sangha
    Kim, Chanwoo
    Hwang, Inchul
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7723 - 7727
  • [10] Speech Emotion Recognition in the Wild using Multi-task and Adversarial Learning
    Parry, Jack
    DeMattos, Eric
    Klementiev, Anita
    Ind, Axel
    Morse-Kopp, Daniela
    Clarke, Georgia
    Palaz, Dimitri
    INTERSPEECH 2022, 2022, : 1158 - 1162