Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization

被引:0
|
作者
Kinon, P. L. [1 ]
Thoma, T. [2 ]
Betsch, P. [1 ]
Kotyczka, P. [2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech, Otto Ammann Pl 9, D-76131 Karlsruhe, Germany
[2] Tech Univ Munich TUM, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Nonlinear port-Hamiltonian systems; generalized Maxwell model; structure-preserving discretization; mixed finite elements; discrete gradients;
D O I
10.1016/j.ifacol.2024.08.264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution proposes a nonlinear and dissipative infinite-dimensional port-Hamiltonian (PH) model for the dynamics of geometrically exact strings. The mechanical model provides a description of large deformations including finite elastic and inelastic strains in a generalized Maxwell model. It is shown that the overall system results from a power-preserving interconnection of PH subsystems. By using a structure-preserving mixed finite element approach, a finite-dimensional PH model is derived. Eventually, midpoint discrete derivatives are employed to deduce an energy-consistent time-stepping method, which inherits discrete-time dissipativity for the irreversible system. An example simulation illustrates the numerical properties of the present approach. Copyright (C) 2024 The Authors.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 32 条
  • [31] Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems
    Serhani, Anass
    Matignon, Denis
    Haine, Ghislain
    IFAC PAPERSONLINE, 2018, 51 (03): : 131 - 136
  • [32] Structure-Preserving Discretization of a Polyconvexity-Inspired Formulation for Coupled Nonlinear Electro-Thermo-Elastodynamics
    Hille, Moritz
    Franke, Marlon
    Zaehringer, Felix
    Betsch, Peter
    IFAC PAPERSONLINE, 2024, 58 (06): : 113 - 118