Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization

被引:0
|
作者
Kinon, P. L. [1 ]
Thoma, T. [2 ]
Betsch, P. [1 ]
Kotyczka, P. [2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech, Otto Ammann Pl 9, D-76131 Karlsruhe, Germany
[2] Tech Univ Munich TUM, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Nonlinear port-Hamiltonian systems; generalized Maxwell model; structure-preserving discretization; mixed finite elements; discrete gradients;
D O I
10.1016/j.ifacol.2024.08.264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution proposes a nonlinear and dissipative infinite-dimensional port-Hamiltonian (PH) model for the dynamics of geometrically exact strings. The mechanical model provides a description of large deformations including finite elastic and inelastic strains in a generalized Maxwell model. It is shown that the overall system results from a power-preserving interconnection of PH subsystems. By using a structure-preserving mixed finite element approach, a finite-dimensional PH model is derived. Eventually, midpoint discrete derivatives are employed to deduce an energy-consistent time-stepping method, which inherits discrete-time dissipativity for the irreversible system. An example simulation illustrates the numerical properties of the present approach. Copyright (C) 2024 The Authors.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 32 条
  • [21] Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2016, 49 (08): : 298 - 303
  • [22] A structure preserving minimal representation of a nonlinear port-Hamiltonian system
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan J.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4885 - 4890
  • [23] Structure-preserving discretization and model order reduction of boundary-controlled 1D port-Hamiltonian systems
    Toledo-Zucco, Jesus-Pablo
    Matignon, Denis
    Poussot-Vassal, Charles
    Le Gorrec, Yann
    SYSTEMS & CONTROL LETTERS, 2024, 194
  • [24] Adaptive Sampling for Structure-Preserving Model Order Reduction of Port-Hamiltonian Systems
    Schwerdtner, Paul
    Voigt, Matthias
    IFAC PAPERSONLINE, 2021, 54 (19): : 143 - 148
  • [25] Structure-preserving linear quadratic Gaussian balanced truncation for port-Hamiltonian descriptor systems
    Breiten, Tobias
    Schulze, Philipp
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 704 : 146 - 191
  • [26] A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control
    Serhani, Anass
    Matignon, Denis
    Haine, Ghislain
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 549 - 558
  • [27] Structure-preserving interval-limited balanced truncation reduced models for port-Hamiltonian systems
    Xu, Kangli
    Jiang, Yaolin
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (03): : 405 - 414
  • [28] Port-Hamiltonian fluid-structure interaction modelling and structure-preserving model order reduction of a classical guitar
    Rettberg, Johannes
    Wittwar, Dominik
    Buchfink, Patrick
    Brauchler, Alexander
    Ziegler, Pascal
    Fehr, Joerg
    Haasdonk, Bernard
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2023, 29 (01) : 116 - 148
  • [29] NUMERICAL ANALYSIS OF A STRUCTURE-PRESERVING SPACE-DISCRETIZATION FOR AN ANISOTROPIC AND HETEROGENEOUS BOUNDARY CONTROLLED N-DIMENSIONAL WAVE EQUATION AS A PORT-HAMILTONIAN SYSTEM
    Haine, Ghislain
    Matignon, Denis
    Serhani, Anass
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (01) : 92 - 133
  • [30] Structure Preserving Spatial Discretization of 1D convection-diffusion port-Hamiltonian Systems
    Voss, T.
    Weiland, S.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6979 - 6984