Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization

被引:0
|
作者
Kinon, P. L. [1 ]
Thoma, T. [2 ]
Betsch, P. [1 ]
Kotyczka, P. [2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Mech, Otto Ammann Pl 9, D-76131 Karlsruhe, Germany
[2] Tech Univ Munich TUM, TUM Sch Engn & Design, Boltzmannstr 15, D-85748 Garching, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 06期
关键词
Nonlinear port-Hamiltonian systems; generalized Maxwell model; structure-preserving discretization; mixed finite elements; discrete gradients;
D O I
10.1016/j.ifacol.2024.08.264
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution proposes a nonlinear and dissipative infinite-dimensional port-Hamiltonian (PH) model for the dynamics of geometrically exact strings. The mechanical model provides a description of large deformations including finite elastic and inelastic strains in a generalized Maxwell model. It is shown that the overall system results from a power-preserving interconnection of PH subsystems. By using a structure-preserving mixed finite element approach, a finite-dimensional PH model is derived. Eventually, midpoint discrete derivatives are employed to deduce an energy-consistent time-stepping method, which inherits discrete-time dissipativity for the irreversible system. An example simulation illustrates the numerical properties of the present approach. Copyright (C) 2024 The Authors.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 32 条
  • [1] Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian
    Haine, Ghislain
    Matignon, Denis
    Monteghetti, Florian
    IFAC PAPERSONLINE, 2022, 55 (30): : 424 - 429
  • [2] Modelling and structure-preserving discretization of Maxwell's equations as port-Hamiltonian system
    Payen, Gabriel
    Matignon, Denis
    Haine, Ghislain
    IFAC PAPERSONLINE, 2020, 53 (02): : 7581 - 7586
  • [3] Structure-preserving discretization for port-Hamiltonian descriptor systems
    Mehrmann, Volker
    Morandin, Riccardo
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6863 - 6868
  • [4] Structure-preserving discretization of port-Hamiltonian plate models
    Brugnoli, Andrea
    Alazard, Daniel
    Pommier-Budinger, Valerie
    Matignon, Denis
    IFAC PAPERSONLINE, 2021, 54 (09): : 359 - 364
  • [5] Structure-preserving generalized balanced truncation for nonlinear port-Hamiltonian systems
    Sarkar, Arijit
    Scherpen, Jacquelien M. A.
    SYSTEMS & CONTROL LETTERS, 2023, 174
  • [6] STRUCTURE-PRESERVING MODEL REDUCTION FOR NONLINEAR PORT-HAMILTONIAN SYSTEMS
    Chaturantabut, S.
    Beattie, C.
    Gugercin, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : B837 - B865
  • [7] Structure-preserving model reduction for nonlinear port-Hamiltonian systems
    Beattie, Christopher
    Gugercin, Serkan
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6564 - 6569
  • [8] Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control
    Brugnoli, Andrea
    Haine, Ghislain
    Matignon, Denis
    IFAC PAPERSONLINE, 2022, 55 (30): : 418 - 423
  • [9] Structure-preserving H?, control for port-Hamiltonian systems
    Breiten, Tobias
    Karsai, Attila
    SYSTEMS & CONTROL LETTERS, 2023, 174
  • [10] Structure-Preserving Discretization of Distributed-Parameter Port-Hamiltonian Systems Using Finite Elements
    Farle, Ortwin
    Baltes, Rolf-Bjoern
    Dyczij-Edlinger, Romanus
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (07) : 500 - 511