Deep Multiagent Reinforcement Learning for Task Offloading and Resource Allocation in Satellite Edge Computing

被引:1
|
作者
Jia, Min [1 ]
Zhang, Liang [1 ]
Wu, Jian [1 ]
Guo, Qing [1 ]
Zhang, Guowei [2 ]
Gu, Xuemai [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Qufu Normal Univ, Sch Cyber Sci Engn, Jining 273165, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; multiagent; resource allocation; satellite edge computing; task offloading; MOBILE-EDGE; CHALLENGES;
D O I
10.1109/JIOT.2024.3482290
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a supplement to terrestrial communication networks, satellite edge computing can break through geographical limitations and provide on-orbit computing services for people in some remote areas to achieve truly seamless global coverage. Considering time-varying channels, queue delays, and dynamic loads of edge computing satellites, we propose a multiagent task offloading and resource allocation (MATORA) algorithm with weighted latency as the optimization goal. It is a mixed integer nonlinear problem decoupled into task offloading and resource allocation subproblems. For the offloading subproblem, we propose a distributed multiagent deep reinforcement learning algorithm, and each agent generates its own offloading decision without knowing the prior knowledge of others. We show that the resource allocation problem is convex and can be solved using convex optimization methods. The experiment shows that the proposed algorithm can better adapt to the change of channel and the dynamic load of edge computing satellite, and it can effectively reduce task latency and task drop rate.
引用
收藏
页码:3832 / 3845
页数:14
相关论文
共 50 条
  • [31] Federated Deep Reinforcement Learning for Energy-Efficient Edge Computing Offloading and Resource Allocation in Industrial Internet
    Li, Xuehua
    Zhang, Jiuchuan
    Pan, Chunyu
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [32] Deep Reinforcement Learning-Based Task Offloading and Load Balancing for Vehicular Edge Computing
    Wu, Zhoupeng
    Jia, Zongpu
    Pang, Xiaoyan
    Zhao, Shan
    ELECTRONICS, 2024, 13 (08)
  • [33] Task offloading in Multiple-Services Mobile Edge Computing: A deep reinforcement learning algorithm
    Peng, Ziyu
    Wang, Gaocai
    Nong, Wang
    Qiu, Yu
    Huang, Shuqiang
    COMPUTER COMMUNICATIONS, 2023, 202 : 1 - 12
  • [34] Task offloading and resource allocation for multi-UAV asset edge computing with multi-agent deep reinforcement learning
    Zakaryia, Samah A.
    Meaad, Mohamed
    Nabil, Tamer
    Hussein, Mohamed K.
    COMPUTING, 2025, 107 (05)
  • [35] Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks
    Chen, Xing
    Liu, Guizhong
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10843 - 10856
  • [36] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [37] Request-Aware Task Offloading in Mobile Edge Computing via Deep Reinforcement Learning
    Sheng, Ziwen
    Mao, Yingchi
    Wang, Jiajun
    Nie, Hua
    Huang, Jianxin
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 294 - 299
  • [38] Multiagent Reinforcement Learning for Task Offloading of Space/Aerial-Assisted Edge Computing
    Li, Yanlong
    Liang, Lei
    Fu, Jielin
    Wang, Junyi
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [39] Deep Reinforcement Learning for Joint Offloading and Resource Allocation in Fog Computing
    Bai, Wenle
    Qian, Cheng
    PROCEEDINGS OF 2021 IEEE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2021, : 131 - 134
  • [40] Computation Offloading and Resource Allocation in Mobile Edge Computing via Reinforcement Learning
    Wang, Danfeng
    Zhao, Jian
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,